Пусть v1 км/ч- скорость первого автомобиля, v2 км/ч - второго, t - время от старта автомобилей до их встречи. Тогда первый автомобиль находился в пути время t1=t+1,6 ч, а второй - время t2=t+2,5 ч, поэтому v1*(t+1,6)=v2*(t+2,5)=180. Кроме того, v1*t+v2*t=180. Получаем систему уравнений:
v1*(t+1,6)=180 v2*(t+2,5)=180 v1*t+v2*t=180
Из первого уравнения находим v1=180/(t+1,6), из второго - v2=180/(t+2,5). Подставляя эти выражения в третье уравнение, получаем уравнение:
180*t/(t+1,6)+180*t/(t+2,5)=180, или t/(t+1,6)+t/(t+2,5)=1.Отсюда следует уравнение t*(t+2,5)+t*(t+1,6)=t²+4,1*t+4, или 2*t²=t²+4. Тогда t²=4 и t=√4=2 ч. Отсюда v1=180/(2+1,6)=50 км/ч и v2=180/(2+2,5)=40 км/ч. ответ: 50 и 40 км/ч.
ответ:1-oе фото
1)x²-2x-35 2)3x²+16x+5 3)x²-13x+40
x²-2x-35=0 3x²+16x+5=0 x²-13x+40=0
D=4+4*35=144 D=256-4*3*5=196 D=169-4*40=9
x1=(2+12):2=7 x1=(-16+14):6=5 x1=(13+3):2=8
x2=(2-12):2=-5 x2=(-16-14):6=0,3333333 x2=(13-3):2=5
4)6x²+x-1
6x²+x-1=0
D=1+4*6*1=25
x1=(-1+5):12=0,3333333
x2=(-1-5):12=-0,5