Объяснение:
1. Постройте график функции y=2x-1. По графику найдите: а) значения функции при значениях аргумента, равных -2;0;3; б)
значения аргумента, при которых значения функции равны 3;7; в) найдите точку пересечения данной прямой с прямой, заданной уравнением x=4
Функция у = 2х - 1 является линейной функцией, то есть графиком данной функции будет прямая. Для построения прямой достаточно двух точек.
х = 1; у = 2 * 1 - 1 = 1. Точка (1; 1).
х = 5; у = 2 * 5 - 1 = 9. Точка (5; 9).
Чертим координатную плоскость, ставим точки, проводим прямую.
а) Значения функции - это значение у, значение аргумента - это значение х. Находим точки -2, 0 и 3 на оси х, мысленно проводим вертикальную прямую и определяем координату у в точке на прямой.
х = -2; у = -5.
х = 0; у = -1.
х = 3; у = 5.
б) Находим точки 3 и 7 на оси у, мысленно проводим горизонтальную прямую, определяем координату х на прямой.
у = 3; х = 2, точка (3; 2).
у = 7; х = 4.
в) Прямая х = 4 - это вертикальная прямая, пересекающая ось х в точке 4. Чертим данную прямую, определяем координаты точки пересечения. Точка (4; 7)
Пусть х - скорость водителя, тогда t=240/x - время, за которое он должен проехать 240 км, x - средняя скорость, т.к. х=S/v.
Фактически водитель ехал 1,5 часа со скоростью х км/ч и проехал путь 1,5х км. Время стоянки 18 мин = 18/60 часа = 0,3 часа.
Т.о. время на оставшийся путь равно t = 240/x -1,5 -0,3, который он ехал со скоростью (х+20) км/ч,
этот путь равен (х+20)(240/x -1,8).
Составим уравнение: 1,5х + (х+20)(240/x -1,8) = 240.
Решите и найдите х. Это и будет средняя скорость.
1,5х2 +(х+20)(240 - 1,8х) = 240х; -0,3х2 - 36х + 4800 = 0;
х2 + 120х - 16000 = 0;
D= 14400 + 64000 = 78400 = 2802 ; x=80.
ответ: 80.