Як ми вже знаємо з попереднього прикладу, в отриманому сплаві має бути 180.34 / 100 = 180.0, 34 = 61,2 кг цинку, в першому — 0,4 х, у другому — 0,3 у. отримуємо систему рівнянь: 0,4 х +0,3 у = 61,2 (маса цинку в отриманому сплаві дорівнює сумі мас у вихідних сплавах); х + у = 180 (маса отриманого сплаву дорівнює сумі мас вихідних сплавів)вирішуємо: 0,4 (180-у) +0,3 у = 61,2; х = 180-у72-0,4 у +0,3 у = 61,2; 0,1 у = 10,8; у = 108, х = 72.тобто треба взяти 108 кг 30%-ного сплаву і 72 кг 40%-ного.
Для решения нужно знать некоторые теоремы: 1) любая высота в равностороннем треугольнике является биссектрисой и медианой этого треугольника, а также серединным перпендикуляром к соответствующей стороне этого треугольника. 2) теорема Пифагора. 3) медианы любого треугольника точкой пересечения делятся в отношении 2:1 считая от вершины. Пусть сторона данного треугольника a=(V3). Проведем какую-либо высоту в данном треугольнике, эта высота является медианой, поэтому делит сторону, к которой проведена пополам. Рассмотрим один из двух прямоугольных треугольников, на которые делится исходных равносторонний треугольник проведенной высотой. Гипотенуза прямоугольного треугольника = a, один из катетов = (a/2). Найдем второй катет, который является высотой исходного треугольника. По т. Пифагора: a^2 = (a/2)^2 + h^2; h^2 = a^2 - (a/2)^2 = a^2 - (a^2/4) = (3/4)*(a^2). h = a*(V3)/2, Центр описанной окружности - это точка пересечения серединных перпендикуляров к сторонам данного треугольника. Но в равностороннем треугольнике все серединные перпендикуляры являются медианами (а также биссектрисами и высотами) этого треугольника. Поэтому длина h это длина медианы, а искомый радиус (в соответствии с теоремой 3) ) будет равен (2/3) от h. Т.е. R = (2/3)*h = (2/3)*a*(V3)/2 = (2/3)*(V3)*(V3)/2 = 1.