Задумано несколько (не обязательно различных) натуральных чисел. Эти числа и их все возможные суммы (по 2, по 3 и т. д.) выписывают на доску в порядке неубывания. Если какое-то число n, выписанное на доску, повторяется несколько раз, то на доске оставляется одно такое число n, а остальные числа, равные n, стираются. Например, если задуманы числа 1, 3, 3, 4, то на доске будет записан набор 1, 3, 4, 5, 6, 7, 8, 10, 11. Приведите все примеры задуманных чисел, для которых на доске будет записан набор 7, 8, 10, 15, 16, 17, 18, 23, 24, 25, 26, 31, 33, 34, 41.
Пусть х мест было в каждом ряду, тогда рядов было 320/х . После увеличения зрительного зала мест стало (х+4) , а рядов 320 / х + 1 . Составляем уравнение по условию задачи:
(х+4) * ( 320/х + 1) = 420
(х+4) *(320+х) / х = 420
приводим к общему знаменателю и отбрасываем его заметив, что х≠0
(х+4)(320+х) = 420х
320х+х2+1280+4х-420х=0
х2 -96 х +1280 = 0
Д= 9216 - 4*1280 = 9216 -5120=4096
х(1)=(96+64) / 2 =80 (нереально для кинотеатра, так как в каждом ряду по 4 места)
х(2) =(96-64) / 2 =16
320:16 + 1 = 21 ряд стал в новом зрит зале.