Каждое простое число, большее 3 имеет вид 6k-1 или 6k+1 где k - некоторое натуральное число. По условию нам нужны 3 простые числа последовательная разность между которыми равна 2 ((p+2)-p=2; (p+4)-(p+2)=2) но если между какими-то простыми числами больше 3 разность равна 2 ( (6k+1)-(6k-1)=2, то следующая "возможная" разность равна 6(k+1)-1-(6k+1)=6k+6-1-6k-1=4>2 тем самым получаем что последовательная разность простых чисел для чисел больше 3 невозможна
Если примем в расчет 3, то получим ряд 3,5,7 - удовлетворяющий задачу. ответ; 3,5,7
Замечаем что все показатели степени нечетные числа, а значит если х отрицательное, то и его степень число отрицательное
Поэтому если х отрицательное то слева число отрицательное (как сумма отрицательных) Если х=0, то в левой части уравнения очевидно 0. Этот случай тоже не подходит Если 0<x<1то для каждой степени а значит л.ч. < --(использовали формулу арифмитической прогрессии с первым членом 1 и разностью 1 иначе для суммы первых натуральных чисел справедлива формула )
При x=1 Получаем равенство 1+2+...+20=210 x=1 - решение
и При x>1 получаем что л.ч. больше правой так как и л.ч. > ответ: 1
(x(x+2)-7(x-2)-8)/(x^2-4)=0
x^2+2x-7x+14-8=0
x^2-5x+6=0
(x-2)(x-3)=0
x=2 не подходит
х=3