М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Ulia209
Ulia209
23.09.2022 18:09 •  Алгебра

Sin2x + cos2x+1=0. кто сможет

👇
Открыть все ответы
Ответ:
MihailBobr
MihailBobr
23.09.2022
Решим не стандартным

1 ученик - А
2 ученик - Б

Получаем:
А            Б
4             5
5             4
5             5
4             4

В итоге,существует расставить 2 ученикам 2 оценки (4 и 5).

А если прибавить к ним еще одного ученика - С. То:

А          Б          С
4          4           4
5          5           5
4          4           5
4          5           5
5          5           4
5          4           4
4          5           4
5          4           5

В итоге получаем

А что если, оставим тех же 2 учеников, но добавим 1 оценку - 3?

А вот что получим:

А                      Б
3                      3
4                      4
5                      5
3                      4
4                      3
4                      5
5                      4
3                      5
5                      3

В итоге, мы получили

Нет смысла, добавлять 3 ученика. Уже  и так можно увидеть закономерность.

В 1 раз, мы имели 2 ученика и 2 оценки, отметим это как:
(2,2)
В 2 раз, мы имели 3 ученика и 2 оценки, отметим это как:
(2,3)
В 3 раз, мы имели 2 ученика и 3 оценки, отметим это как:
(3,2)

А теперь, выведем формулу:
(a,b)=a^b - где a-число оценок, b-число учеников.

В итоге и получаем:
1 случай:
(2,2)=2^2=4
2 случай:
(2,3)=2^3=8
3 случай:
(3,2)=3^2=9

Теперь, вычислим наш случай в задаче. Есть 24 ученика = b, и 4 оценки=a (2,3,4,5).
Отсюда:
(a,b)=(4,24)=4^{24}=281474976710656

Второй

Для первого ученика существует 4 варианта:
2,3,4,5 
Для второго ученика существует 4 варианта на каждый вариант первого ученика.
То есть:
\dispaystyle 4\cdot 4=16 - варианта событий.

Для третьего ученика существует 4 варианта на каждый вариант второго ученика.
То есть:
16\cdot 4=64 - варианта событий.

И так далее. В итоге получаем, что для 24 учеников существует ровно:

4^{24}=281474976710656 - вариантов событий.
4,4(14 оценок)
Ответ:
superutkanosska22
superutkanosska22
23.09.2022
Т.к. модуль неотрицателен, 3x - 1 >= 0, x >= 1/3.

Если обе части уравнения неотрицательны, можно возвести в квадрат, новых корней при этом не возникнет. Заодно пользуемся тем, что |...|^2 = (...)^2:
(x^2 + 5x - 4)^2 = (3x - 1)^2
(x^2 + 5x - 4)^2 - (3x - 1)^2 = 0

Раскладываем по формуле разности квадратов:
(x^2 + 5x - 4 - 3x + 1)(x^2 + 5x - 4 + 3x - 1) = 0
(x^2 + 2x - 3)(x^2 + 8x - 5) = 0

У первой скобки корни -3, 1 (легко угадать, пользуясь теоремой Виета).
У второй скобки корни найдем, выделив полный квадрат:
x^2 + 8x - 5 = 0
x^2 + 8x + 16 = 16 + 5
(x + 4)^2 = 21
x = -4 +- sqrt(21)

Нужны корни, которые не меньше 1/3. У первой скобки это 1, у второй - точно не -4 - sqrt(21) < 0 и возможно -4 + sqrt(21).

Сравним -4 + sqrt(21) и 1/3. Обозначим неизвестный значок за v и попереписываем:
-4 + sqrt(21) v 1/3
sqrt(21) v 1/3 + 4
sqrt(21) v 13/3
3 sqrt(21) v 13
sqrt(183) v sqrt(169) - отсюда ясно, что v = '>', -4 + sqrt(21) > 1/3.

Получается, у уравнения есть два корня x = 1 и x = -4 + sqrt(21).

ответ. sqrt(21) - 3.

P.S. Можно было не сравнивать sqrt(21) - 4 и 1/3, а поступить иначе. Заметим, что график y = x^2 + 8x - 5 - квадратичная парабола, ветви направлены вверх, ось симметрии x = -4. Тогда если y(1/3) < 0, то больший корень будет больше 1/3.
4,8(77 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ