Далее: Таким образом, получаем уравнение: Теперь понятно, что можно ввести замену и продолжать решение уже дробно-рационального уравнения.
Советую запомнить приём, который я здесь употребил. Он состоит вот в чём. Мы помним формулу сокращённого умножения: Отсюда я могу легко выразить сумму квадратов: Думаю, Вы уже догадались, что в нашем уравнении сыграло роль x, а что y. Этот приём встречается очень часто в самых неожиданных ситуациях, так что рекомендую запомнить его. Уравнение можно было решить и по формулам понижения степени(правда, это значительно было бы сложнее). Но в целом, можно рассмотреть и такой вариант, но я показал проще.
Делаем замену: После замены получаем: Умножаем обе части уравнения на 8t(с дробями работать крайне неудобно, да и t в знаменателе нам ни к чему - просто запомним, что он должен быть отличным от 0, а потом проверим это): Решаем квадратное уравнение(кстати, t уже отличен от 0. В этом можно убедиться прямой подстановкой) - этот корень не удовлетворяет нашему уравнению. Следовательно, возвращаясь к переменной x, получаем простейшее уравнение: Отсюда Это и есть ответ. Напомню, что при решении простейшего уравнения я использовал формулу понижения степени, а в конечном результате n - целое число.
S=22,5 км/ч , t=4 ч ,V р=3 км/ч. Пусть x - скорость катера , тогда (x+3) км/ч - это скорость катера по течению , а (x-3) км/ч - против течения.Составим уравнение 22,5 км только один раз по течению и один раз против течения , 22,5/(x+3)-время пройденное катером по течению, 22,5/(x-3)- против течения, 22,5/(x+3)+22,5/(x-3)=4 ч решаем 22,5*(x-3) / (x+3)(x-3) = 22,5x-67,5/x^2-9 22,5*(x+3) / (x+3)(x-3) = 22,5x+67,5/x^2-9 22,5x-67,5/x^2-9 + 22,5x+67,5/x^2-9 = 45x/x^2-9 45x/x^2-9=4 , 45x=x^2-9*4 4x^2-36=45x и 45x-4x^2-36=0 x=12 ответ: скорость катера равна 12 км/ч.
Далее:
Таким образом, получаем уравнение:
Теперь понятно, что можно ввести замену
Советую запомнить приём, который я здесь употребил. Он состоит вот в чём.
Мы помним формулу сокращённого умножения:
Отсюда я могу легко выразить сумму квадратов:
Думаю, Вы уже догадались, что в нашем уравнении сыграло роль x, а что y.
Этот приём встречается очень часто в самых неожиданных ситуациях, так что рекомендую запомнить его.
Уравнение можно было решить и по формулам понижения степени(правда, это значительно было бы сложнее). Но в целом, можно рассмотреть и такой вариант, но я показал проще.
Делаем замену:
После замены получаем:
Умножаем обе части уравнения на 8t(с дробями работать крайне неудобно, да и t в знаменателе нам ни к чему - просто запомним, что он должен быть отличным от 0, а потом проверим это):
Решаем квадратное уравнение(кстати, t уже отличен от 0. В этом можно убедиться прямой подстановкой)
Следовательно, возвращаясь к переменной x, получаем простейшее уравнение:
Отсюда
Это и есть ответ. Напомню, что при решении простейшего уравнения я использовал формулу понижения степени, а в конечном результате n - целое число.