Уравнение любой касательной к любому графику находится по формуле:
Где производная функции в данной точке. А точка касания по иксу.
1) Поначалу у функции мы должны найти производную общего типа этой функции. Это степенная функция, а производная любой степенной функции находится следующей формулой: - где n это степень. В нашем случае:
Так, нашли производную общего случая.
Так как, точки касания не даны, мы запишем нахождение касательной в любой точке этой функции:
2) Опять же, найдем производную
Так как, точки касания не даны, мы запишем нахождение касательной в любой точке этой функции:
То есть, берешь любой икс, и вставляешь в выражение касательной вместо и получаешь уравнение касательной.
Это и есть окончательные ответы. Если что-то не правильно, то это значит что вы не правильно написали условие.
Из заданного выражения 2x + 49x*2 = 50, найдем "х";
По правилам пропорции произведение крайних членов равно произведению средних членов пропорции и получаем следующее выражение:
x^2 + 49 = 50 х^2, перенесем величины, содержащие неизвестное в левую часть, полученного уравнения, а постоянную величину в правую часть;
х^2 - 50 х^2 = - 49, не забывая менять знак на противоположный;
- 49 х^2 = - 49, решаем уравнение, откуда х^2 = 1, х12 = +-1;
Чтобы найти значение следующего выражения: х - 7/х, подставим полученные результаты;
х1 = 1; 1 - 7/1 = - 6;
х2 = - 1; - 1 - 7/-1 = - 1 + 7 = 6