Сумма второго и четвертого члена арифметической прогрессии равна 14, а седьмой её член на 12 больше третьего.Найдите разность и первый член данной прогрессии кто может.
Решение
а2+а4=14 так вот
а7=а3+12
тогда
по характеристическому свойству арифметической прогрессии:
a(n)=(a(n-1)+a(n+1))/2
а3=(а2+а4)/2=14/2=7
а7=7+12=19
a(n)=a1+d*(n-1)
a(3)=a1+2*d=7
a(7)=a1+6*d=19
тогда
a1=7-2*d
и подставим
(7-2*d)+6*d=19
4*d=12
d=3
a1=7-2*3=1
Проверим
1_4_7_10_13_16_19 - такая прогрессия
сумма 2-го и 4-го = 4+10=14 - истина
19-7=12 - истина
ответ:
первый член прогрессии (а1)=1
разность арифметической прогрессии (d)=3
Оценка: 5
ответ:
353:
примеры приводим: 3^2=9 9: 5 без остатка не делится
4^2=16 16: 5 не делится
5^2=25 25: 5 делится
итог: делятся но не все
354:
1^3 + 2^3 + 3^3
1 + 16 + 27 = 34: 9 не делится без остатка
2^3 + 3^3 + 4^3
16 + 27 + 64 = 107: 9 без остатка не делится
можешь продолжить если хочешь
итог:
не делятся
355:
(1+a)^n> 1+na a> 0 n> или=2 возьмем а=1 n=2
4> 3 верно
возьмем a=3 n=2
16> 7 верно
ну и последний пример a=5 n=3
(1+5)^3> 16
216> 16 верно
при любых натуральных n> или=2 верно неравенство (1+a)^n> 1+na
где a> 0
объяснение:
ну как то так