Пусть х - количество трехмеcтных, а у = двухместных. Известно, что всего 7 палаток, тогда х + у = 7. Всего было 17 туристов, 3x туристов разместилось в трехместных палатках и 2у - в двухместных. 3х+2у=17. Составим систему уравнений
х + у = 7
3х + 2у = 17
у = 7 - х
Подставим значение у во второе уравнение
3х + 2(7-х) = 17
3х + 14 - 2х = 17
х = 17- 14
х = 3
Следовтельно, трехместных палаток было 3, а двухместных 7-3 = 4
ответ: 3 трехместных и 4 двухместных палатки.
Можно сделать и уравнение с одним неизвестным.
Пусть было х двуместных палаток. Тогда трехместных (7-х). Известно, что всего было 17 туристов, тогда в двухместных палатках было 2х туристов, а в трехместных 3(7-х). Имеем уравнение
2х + 3(7-х)=17
2х + 21 - 3х = 12
-х = 17 - 21
-х = -4
х = 4
ответ: 4 двухместные палатки.
x^2 -12x+35
a) (x-6)^2 - 1
b) (x-5)*(x-7)
Объяснение:
a) x^2 -12x+35 = x^2 -12x+36 -1
x^2 -12x+36 = (x-6)^2
(x-6)^2 -1
b) x^2-5x-7x+35
x(x-5)-7(x-5)
(x-5)(x-7)