Действительные числа делятся на: 1) Положительные (8; 17), отрицательные (-3; -54) и 0. 2) Рациональные (1,8; 9) и иррациональные (√3; Пи). 3) Рациональные делятся на целые (-6; 4) и дробные (0,6; 1/7) 4) Целые числа могут быть натуральными (1, 56) 5) Дроби делятся на конечные (0,5; 2,17) и бесконечные (1/3=0,(3); 1/7=0,(142857) ). 6) Также дроби делятся на правильные ( меньше 1) и неправильные (больше или равно 1). 7) Ещё дроби бывают простые (33/17) и смешанные (5 1/3). 8) Иррациональные числа бывают алгебраическими, которые могут быть корнями уравнения с целыми коэффициентами (например, √7) и трансцендентными, которые не могут быть корнями (например, Пи). 9) Натуральные числа бывают простыми (5; 13), составными (6, 10) и 1, которое не простое и не составное. 10) В множестве натуральных чисел есть много интересных. Например, факториалы или совершенные числа. Вот так мы без труда накидали десяток подмножеств действительных чисел. Если подумать, можно и ещё что-нибудь вспомнить.
Двое рабочих выполняют некоторую работу. После 45 минут совместной работы первый рабочий был переведен на другую работу, и второй рабочий закончил оставшуюся часть работы за 2 часа 15 минут. За какое время мог бы выполнить работу каждый рабочий в отдельности, если известно, что второму для этого понадобится на 1 час больше, чем первому.
Решение:
Пусть первый рабочий выполнит всю работу за х часов, а второй всю работу - за y часов. По условию х=у–1, это уравнение (1).
Пусть объем всей работы равен 1. Тогда 1/х – производительность труда первого рабочего (количество работы, выполненной за 1 час) , 1/у – производительность труда второго рабочего.
Так как они работали 45 мин. = 3/4 часа совместно, то (3/4)(1/x + 1/y) – объем работы, выполненной рабочими за 45 минут.
Так как второй рабочий работал один 2 часа 15 минут = 2¼ часа = 9/4 часа, то (9/4)*(1/y) – объем работы, выполненной вторым рабочим за 2 часа 15 минут.
По условию 3/4 *(1/x + 1/y) +9/(4y) = 1 это уравнение (2).
Таким образом, мы получили систему двух уравнений: (1) и (2).
Решим ее, для этого выражение для х из уравнения (1) подставим в (2)
Из двух значений для у выберем то, которое подходит по смыслу задачи у1=45 мин. , но 45 мин. рабочие работали вместе, а потом второй рабочий работал еще отдельно, поэтому y1 = 3/4 не подходит по смыслу задачи. Для полученного у2=4 найдем из первого уравнения первоначальной системы значение х
х=4–1; х=3 ч.
ответ: первый рабочий выполнит работу за 3 часа, второй – за 4 часа.
Замечание: эту задачу можно было решить, не вводя вторую переменную у, а выразить время работы второго рабочего через х, тогда нужно было составить одно уравнение и решить его.
2синус(квадрат)х + cos(квадрат)x-3sinx-5=0
Если так то
2(1-cos^2x)+cos^2x-3sinx-5=0
2-2cos^2x+cos^2x-3sinx-5=0
-2cos^2x+cos^2x-3sinx-3=0
-cos^2x-3sinx-3=0
-1(1-sin^2x)-3sinx-3=0
-1+sin^2x-3sinx-3=0
sin^2x-3sinx-4=0
sinx=t
t^2-3t-4=0
diskriminant=9-4*(-4)=25
t1=(3+5)/2=4
t2=-1
sinx=4 нет корней так -1<sinx<1
sinx=-1
x=acrsin(-1) не помню сколько в градусах забыл школу