Сумма первых n членов арифметической прогрессии вычисляется по формуле sn=(a1+an)/2⋅n. пользуясь этой формулой, вычисли значение a1, если an=6, sn=384, n=16.
(5х-3)²+(12х+5)²≤(7-13х)²+34х²+17х+410 25х²-30х+9+144х²+120х+25≤49-182х+169х²+34х²+17х+410 169х²+90х+34≤ 203х²-165х+459 169х²-203х²+90х+165х+34-459 ≤ 0 -34х²+255х-425≤0 ( : -17) 2х²-15х+25≥0 D=225-200=25=(5)² x1=(15+5)/4=5 х2=5/2=2,5 2(х-5)(х-2,5)≥0 (:2) (х-5)(х-2,5)≥0 2,55 х + - + нас интересуют только те точки ,где функция принимает положительное значение - это промежутки от -∞ до 2,5 и от 5 до +∞ точки 2,5 и 5 тоже входят , так как неравенство не строгое тогда запишем : х∈(-∞;2,5]U[5;+∞)
Последнее воскресенье перед последним понедельником в одном городе, а совсем последнее воскресенье в другом городе. Это значит, что воскресенье было последним днём месяца. А в следующем месяце было тоже самое - воскресенье было последним днём месяца. Это значит, что второй месяц был невисокосный февраль, а первый январь. Итак, 31 января Игорь был в Мурманске, а 31-7=24 января в Новосибирске. В следующем месяце, феврале, 28 он был в Томске, а за неделю до этого, 21 февраля в Кирове. Остаётся добавить, что последний раз 31 января и 28 февраля выпали на воскресенье в 2010 г.
25х²-30х+9+144х²+120х+25≤49-182х+169х²+34х²+17х+410
169х²+90х+34≤ 203х²-165х+459
169х²-203х²+90х+165х+34-459 ≤ 0
-34х²+255х-425≤0 ( : -17)
2х²-15х+25≥0
D=225-200=25=(5)²
x1=(15+5)/4=5
х2=5/2=2,5
2(х-5)(х-2,5)≥0 (:2)
(х-5)(х-2,5)≥0
2,55 х
+ - +
нас интересуют только те точки ,где функция принимает положительное значение - это промежутки от -∞ до 2,5 и от 5 до +∞
точки 2,5 и 5 тоже входят , так как неравенство не строгое
тогда запишем : х∈(-∞;2,5]U[5;+∞)