2^х так как производная от е^x равна Е^X
1)а_n=3n-15
2)a_n+1=a_n+n+1
3)a_n=200n-185
Объяснение:
1.
Последовательность являет
ся арифметической прогрес
сией:
а_n=а_1+d(n-1)
По условию а_1=-12
d=a_2-a_1=(-9)-(-12)=
=-9+12=3
Подставляем а_1 и d
вформулу для а_n :
a_n=-12+3(n-1)=
=-12+3n-3=
=3n-15
Рекурентная формула
a_n=-13+3n-3
2.
Закономерность:
Каждый член последователь
ности получен прибавлением
к предыдущему номера после
дующего члена:
a_n+1=a_n+(n+1)=a_n+n+1
3.
Последовательность являет
ся арифметической прогрес
сией:
а_1=15
d=a_2-a_1=215-15=200
a_n=a_1+d(n-1)
a_n=15+200(n-1)=
=15+200n-200=200n-185
Рекурентная формула
a_n=200n-185.
a) они параллельны
б) пересекаются
Объяснение:
y = kx + l
параллельная: y = kx + a, при a не равно l
т.е.:
y=8x+2 || y=8x-1 (https://math.semestr.ru/math/plot.php - там очень удобно работать с графиками)
и так с остальными
пересекает, если имеет общие точки. значит, при определенном значении y и x, функции должны быть равны
при этом они не должны быть параллельны
т.е. y = kx + l никогда не будет равно y = kx + a, если a не равно l
иначе мы придем к равенству l = a, а оно не должно выполняться вообще
следовательно, k первой и второй функции должны отличаться, т.к. в ином случае они параллельны
итого выходит так:
y = kx + b U y = ax + b, где b - любое число, а - число, не равное k
(отсюда же можно сделать вывод, почему некоторые графики параллельны - если они не могут быть равны, значит не имеют точек пересечения, а это определение параллельности)
совпадает, если графики равны. т.е. k1=k2, l1=l2, если это линейная функция и т.д.
y = 2^x ---показательная функция (аргумент в показателе степени...)
обратная к показательной функции ---логарифмическая функция (логарифм ---это показатель степени, в кот. нужно возвести основание логарифма, чтобы получить число...)
y = log(2)x (логарифм по основанию 2 числа х)