М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
andreevik2003
andreevik2003
29.04.2020 13:18 •  Алгебра

. Найдите координаты точки пересечения графика функции y=2x-5 с осью абсцисс: [1] А) –1
Б) –5
В) 2,5
Г) 0,4​

👇
Ответ:
merifai
merifai
29.04.2020

Объяснение:

y = 2х - 5

График пересекает ось абцисс ⇒ y = 0

0 = 2х - 5

2х = 5

х = 5 / 2

х = 2,5

4,7(64 оценок)
Ответ:
Nikita9244
Nikita9244
29.04.2020

Объяснение:

y=2x-5

0=2x-5

2x=5  // : 2

x= 2,5  OTBET: В) 2,5

4,5(34 оценок)
Открыть все ответы
Ответ:
kris0287
kris0287
29.04.2020
А) 2cos(π/2-x)=tgx, cos(π/2-x)=sinx
2sinx=tgx, tgx=sinx/cosx ⇒ sinx=tgxcosx
2tgxcosx=tgx
2tgxcosx-tgx=0
tgx(2cosx-1)=0
1) tgx=0 ⇒ x=πn, n∈Z
2)2cosx-1=0
2cosx=1
cosx=1/2 ⇒ x=(плюс-минус)π/3+2πn, n∈Z
ответ: x=πn, n∈Z; x=(плюс-минус)π/3+2πn, n∈Z
б) x∈[-2π;-π/2]
Данному промежутку принадлежат корни: -2π, -5π/3, -π

Так как логарифм б по основанию а равно 2, то б равно а в квадрате, тогда log(ab⁴)по основанию а=log(a(a²)⁴) по основанию а=loga⁹ по основанию а=9.
ответ: 9.

а) 2cos(π/2+x)=√3tgx, cos(π/2+x)=-sinx
-2sinx=√3tgx, tgx=six/cosx ⇒ sinx=tgxcosx
-2tgxcosx=√3tgx
-2tgxcosx-√3tgx=0
tgx(-2cosx-√3)=0
1) tgx=0 ⇒ x=πn, n∈Z
2) -2cosx-√3=0
-2cosx=√3
cosx=-√3/2
x=(плюс-минус)5π/6+2πn, n∈Z
ответ: x=πn, n∈Z; x=(плюс-минус)5π/6+2πn, n∈Z
б) x∈[-3π;-3π/2]
Данному промежутку принадлежат корни: -3π, -13π/6, -2π
4,6(53 оценок)
Ответ:
Нолик27
Нолик27
29.04.2020
Произведение двух множителей ≤0,тогда и только тогда, когда множители имеют разные знаки.
Решаем две системы
1) \left \{ {{20-11x \geq 0} \atop {log_{5x-9}(x^2-4x+5) \leq 0}} \right. \\ \\ \left \{ {{20-11x \geq 0} \atop {log_{5x-9}(x^2-4x+5) \leq log_{5x-9}1}} \right.
решение системы предполагает рассмотрение двух случаев
а) при (5х-9)>1 логарифмическая функция возрастает, большему значению аргумента соответствует большее значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным,  получаем систему  четырех неравенств:
20-11х≥0;
5x-9>1;
х²-4х+5≤1;
х²-4х+5>0.
Решение каждого неравенства системы:
х≤20/11
х>1,8
х=2
х- любое
О т в е т. 1а) система не имеет решений.
б) при 0<(5х-9)<1 логарифмическая функция убывает, большему значению аргумента соответствует меньшее  значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным,  получаем систему  четырех неравенств:
20-11х≥0
0<5x-9<1
х²-4х+5≥1
х²-4х+5>0
Решение
х≤20/11
0<х<1,8
х-любое (так как х²-4х+4≥0 при любом х)
х- любое
Решение системы 1б) 0<x<1,8, так как (20/11) >1,8
О т в е т. 1)0<x<1,8
2) \left \{ {{20-11x \leq 0} \atop {log_{5x-9}(x^2-4x+5) \geq 0}} \right. \\ \\ \left \{ {{20-11x \leq 0} \atop {log_{5x-9}(x^2-4x+5) \geq log_{5x-9}1}} \right.

решение системы также предполагает рассмотрение двух случаев
а) при (5х-9)>1 логарифмическая функция возрастает, большему значению аргумента соответствует большее значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным,  получаем систему  четырех неравенств:
20-11х≤0
5x-9>1
х²-4х+5≥1
х²-4х+5>0
Решение
х≥20/11
х>1,8
х-любое
х- любое
О т в е т.  2 а) х≥20/11.

б) при 0<(5х-9)<1 логарифмическая функция убывает, большему значению аргумента соответствует меньшее  значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным,  получаем систему  четырех неравенств:
20-11х≤0
0<5x-9<1
х²-4х+5≤1
х²-4х+5>0
Решение
х≥20/11
0<х<1,8
х=2
х- любое
Решение системы 2б) нет решений
О т в е т. 2) х≥20/11

О т в е т. 0 < x < 1,8 ; x≥20/11
или х∈(0;1,8)U(1целая 9/11;+∞)
4,8(26 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ