Выражение можно переписать как (x-y)(x+y)(x²+y²+2z). Если х и y имеют разную четность, то все выражение нечетное (т.к. сумма и разность чисел разной четности - нечетные).. Если x и y оба четные, то все выражение делится на 8 (каждая скобка делится на 2). Если х и y оба нечетные, то опять все выражение делится на 8 (т.к. сумма и разность нечетных чисел - четные). Если х=1, y=0, то все выражение равно 2z+1, т.е. a может быть любым нечетным числом. Если х=2, y=0, то все выражение равно 8(2+z), т.е. а может быть любым числом кратным 8, кроме 8. И вообще, все это выражение не может равняться 8, т.к.если выражение кратно 8 и х≠y, то x-y≥2 и x+y≥2, а значит (x-y)(x+y)(x²+y²+2z)≥4(4+2z)≥16. Таким образом, а может быть любым нечетным числом, а их в интервале от 1 до 4000 всего 4000/2=2000 штук, любым кратным 8, кроме самой 8, а их всего 4000/8-1=499. Итого, существует 2499 значений а.
Решать надо через производную: f'' (x) = 3x^2+6x = 0 3x(x+2)=0 x=0, x= -2 Рисуешь координатную прямую, на ней отмечаешь эти две точки. Они делят прямую на 3 промежутка: на первом промежутке(-бесконечность; -2] ставь плюс на втором минус, на третьем тоже плюс. Таким образом, а) функция убывает на промежутке от (-бесконечность; -2], возрастает от [-2; +бесконечность)...б) -2 точка минимума, 0 не является точкой экстремума, т.к. там не происходит смена знака...в) чтобы найти наибольшее и наименьшее значение, ты должен подставить -4, -2, 0 и 1 в начальную функцию и посчитать.
Поскольку координаты точки А принадлежат графику функции, то подставим их координаты в график уравнения
-4 = k/1
k = -4