у = -х² + 2х + 10
Объяснение:
Квадратичная функция у = ах² + bx + c (1)
График её проходит через точку (0; 10)
Подставим координаты этой точки в формулу (1)
10 = а·0 + b · 0 + c ⇒ c = 10
Вершина параболы находится в точке (1; 11)
Подставим координаты этой точки в формулу (1)
11 = а + b + 10 ⇒ а + b = 1 (2)
Координата х вершины параболы вычисляется по формуле
х(верш) = -b/(2a)
x (верш) = 1, тогда b = -2a (3)
Подставим (3) в (2) а - 2а = 1 ⇒ а = -1
Тогда b = -2 · (-1) = 2
Квадратичная функция получилась такая
у = -х² + 2х + 10
(-1; 2) , (2; - 1).
Объяснение:
1) {х³ + у³ = 7
{ху(х+у) = - 2;
{(х+ у)(х²-ху+у²) = 7
{ху(х+у) = - 2;
{(х+ у)((х+у)² -3ху) = 7
{ху(х+у) = - 2;
Пусть х+у = а; xy = b, получим
{а(а² - 3b) = 7,
{ba = - 2;
{а³ - 3ba = 7,
{ba = - 2;
{а³ + 6 = 7,
{ba = - 2;
{а³ = 1,
{ba = - 2;
{а = 1,
{ba = - 2;
{a = 1,
{b = - 2.
2) Получили, что
{х + у = 1,
{ху = - 2.
{х = 1 - у
{(1-у)у = - 2
{х = 1 - у
{-у² + у = - 2
{х = 1 - у
{у² - у - 2 = 0;
{ х = 1 - у,
{ у = 2 или у = - 1
{х = - 1. или {х = 2
{у = 2; {у = - 1.
(-1; 2) , (2; - 1)
Проверка:
1) (-1; 2)
{(-1)³ + 2³ = 7 - верно;
{ -2•(-1 + 2) = -2 - верно.
2) (2; - 1)
{2³ + (-1)³ = 7 - верно;
{ -2•(2-1) = -2 - верно