М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Lubimka01
Lubimka01
02.09.2021 08:34 •  Алгебра

Представьте в виде произведения степеней:​


Представьте в виде произведения степеней:​

👇
Ответ:
Ab в 7 делить на ab в 5
4,7(8 оценок)
Открыть все ответы
Ответ:
anx2003
anx2003
02.09.2021

1) Представляем в виде многочлена математическое выражение:

1. (с - 6)² = (с - 6)(с - 6) = с² - 6с - 6с + 36 = с² - 12с + 36;

2. (2а - 3в)² = (2а - 3в)(2а - 3в) = 4а² - 6ав - 6ав + 9в² = 4а² - 12ав + 9в²;

3. (5 - а)(5 + а) = 25 + 5а - 5а - а² = 25 - а²;

4. (7х + 10у)(10у - 7х) = 70ху - 49х² + 100у² - 70ху = 100у² - 49х²;

2) Раскладываем на множители:

1. в² - 49 = в² - 7²;

2. с² - 8с + 16 = (с - 4)(с - 4) = (с - 4)²;

3. 100 - 9х² = 10² - (3х)²;

4. 4а² + 20ав + 25в² = (2а)² + 5в(4а + 5в);

3) Максимально возможно упрощаем выражение:

(х - 2)(х + 2) - (х - 5)² = (х - 2)(х + 2) - (х - 5)(х - 5) = (х² + 2х - 2х - 4) - (х² - 5х - 5х + 25) =

х² - 4 - х² + 10х - 25 = 10х - 29;

4) Решаем уравнение с одним неизвестным:

4(3у + 1)² - 27 = (4у + 9)(4у - 9) + 2(5у + 2)(2у - 7);

4(3у + 1)(3у + 1) - 27 = (4у + 9)(4у - 9) + 2(5у + 2)(2у - 7);

Раскрываем скобки:

4(9у² + 3у + 3у + 1) - 27 = (16у² - 36у + 36у - 81) + 2(10у² - 35у + 4у - 14);

4(9у² + 6у + 1) - 27 = (16у² - 81) + 2(10у² - 31у - 14);

36у² + 24у + 4 - 27 = 16у² - 81 + 20у² - 62у - 28;

Приводим подобные:

36у² + 24у - 23 = 36у² - 62у - 109;

Переносим с противоположным знаком известное в правую часть равенства, неизвестные в левую:

36у² + 24у - 36у² + 62у = 23 - 109;

И снова приводим подобные:

86у = - 86;

Делим обе части равенства на коэффициент при у:

у = - 86 / 86;

у = - 1;

Проверяем:

4(3 х (- 1) + 1)² - 27 = (4 х (- 1) + 9)(4 х (- 1) - 9) + 2(5 х (- 1) + 2)(2 х (- 1) - 7);

4(- 3 + 1)² - 27 = (- 4 + 9)(- 4 - 9) + 2(- 5 + 2)(- 2 - 7);

4 х 4 - 27 = 5 х (- 13) + 2 х (- 3) х (- 9);

16 - 27 = - 65 + 54;

- 11 = - 11.

4,7(40 оценок)
Ответ:
MasterDrenZik
MasterDrenZik
02.09.2021
Функции  и построить ее график.

1) Функция определена всюду, кроме точек .

2) Функция нечетная, так как f(-x) = -f(x), и, следовательно, ее график симметричен относительно начала координат. Поэтому ограничимся исследованием только для 0 ≤ x ≤ +∞.

3) Функция не периодическая.

4) Так как y=0 только при x=0, то пересечение с осями координат происходит только в начале координат.

5) Функция имеет разрыв второго рода в точке , причем , . Попутно отметим, что прямая  – вертикальная асимптота.

6) Находим  и приравниваем ее к нулю: , откуда x1 = -3, x2 = 0, x3 = 3. На экстремум надо исследовать только точку x=3 (точку x2=0 не исследуем, так как она является граничной точкой промежутка [0, +∞)).

В окрестности точки x3=3 имеет: y’>0 при x<3 и y ’<0 при x>3, следовательно, в точке x3 функция имеет максимум, ymax(3)=-9/2.

Найти первую производную функции

Для проверки правильности нахождения минимального и максимального значения.

7) Находим . Видим, что y’’=0 только при x=0, при этом y”<0 при x<0 и y”>0 при x>0, следовательно, в точке (0,0) кривая имеет перегиб. Иногда направление вогнутости может измениться при переходе через разрыв кривой, поэтому следует выяснить знак y” и около точек разрыва функции. В нашем случае y”>0 на промежутке (0, ) и y”<0 на (, +∞), следовательно, на (0, ) кривая вогнута и выпукла на (, ∞).

Найти вторую производную функции

8) Выясним вопрос об асимптотах.

Наличие вертикальной асимптоты  установлено выше. Ищем горизонтальные: , следовательно, горизонтальных асимптот нет.

Найдем наклонные асимптоты: , , следовательно, y=-x – наклонная двусторонняя асимптота.

9) Теперь, используя полученные данные, строим чертеж:
4,7(41 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ