М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
fkbithxtvg
fkbithxtvg
04.02.2021 03:59 •  Алгебра

Напишите формулу для нахождения n-го члена последовательности 2/3, 3/6, 4/9, 5/12, ...

👇
Ответ:
Sergant17
Sergant17
04.02.2021

.........................


Напишите формулу для нахождения n-го члена последовательности 2/3, 3/6, 4/9, 5/12, ...
4,5(19 оценок)
Открыть все ответы
Ответ:
Yar4ik03
Yar4ik03
04.02.2021

Объяснение:

Рассмотрим функцию y = (23 - x) * e23 – x. Отметим, что данная функция определена и дифференцируема для всех х ∈ (-∞; +∞). По требованию задания, найдём точки минимума данной функции, если таковые существуют. Воспользуемся приёмами дифференциального и интегрального исчисления. Как известно, необходимым условием экстремума функции одной переменной в точке x* является равенство нулю первой производной функции, то есть, в точке x* первая производная функции должна обращаться в нуль.

Найдём первую производную данной функции: f Ꞌ(x) = ((23 - x) * e23 – x)Ꞌ = (23 - x)Ꞌ * e23 – x + (23 - x) * (e23 – x)Ꞌ = -e23 – x - (23 - x) * e23 – x = (x – 24) * e23 – x. Приравнивая производную к нулю, получим уравнение (x – 24) * e23 – x = 0. Для того, чтобы произведение двух сомножителей равнялось нулю, необходимым и достаточным условием является равенство нулю хотя бы одного из сомножителей. Поскольку для любого х ∈ (-∞; +∞) справедливо e23 – x > 0, то получим х – 24 = 0, откуда х = 24.

Для выяснения поведения функции в найденной точке, рассмотрим поведение производной в следующих двух множествах: (-∞; 24) и (24; +∞). Очевидно, что, при х ∈ (-∞; 24), например, при х = 23, производная f Ꞌ(x) < 0; при х ∈(24; +∞), например, при х = 25, производная f Ꞌ(x) > 0.

Поскольку при переходе через точку х = 24 производная f Ꞌ(x) меняет свой знак с минуса на плюс, то точка x = 24 является точкой минимума функции. Вычислим значение данной функции при x = 24. Имеем: f(24) = (23 - 24) * e23 – 24 = -1 / е.

Значит, точкой минимума данной функции является х = 24.

ответ: Точкой минимума данной функции является х = 24.

4,6(55 оценок)
Ответ:
киса822
киса822
04.02.2021
1. Уравнение касательной y= f(х0) + f'(x0)(x - x0), где х0=3 ( задано в условии).
Сгачала ищем производную функции f'(x)= 2*3x-2=6x-2.
Теперь найдем производную в точке х0=3
f'(x0)=f'(3)=6*3-2=16.
Теперь найдем значение функции в точке х0=3
f(x0)=f(3)=3*3²-2*3+11=27-6+11=32.
Все подставляем в уравнение касателтной
у=32+16(x-3)=32+16x-48=16x-16
y=16x-16 уравнение касателтной.
2.скорость это первая производная от S, а ускорение это вторая производная.
V(t)=S'(t)=16t+3, а при t=3 c
V(3)=16*3+3=51.
Ускорение а=S''(t)=V'(t)=16.

3. f(x)=15x^4-10x^3+2x-4
Производная от суммы ищется легко, нужно брать производную от каждого слогаемого. Есть таблица простых производных, вот по ней и надо смотреть. При переменных константа сохраняется, для 15х⁴ производная будет 15*4(это степень)*х³(а тут степень на один понижается и т.д.
f'(x)=15*4х³-10*3х²+2=60х³-30х²+2.
Для 4 производная 0, для х производная 1, поэтому для 2х двойка остается как константа, а вместо х единица, вот и получается просто 2.
4,5(34 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ