а) x²+3x=10; x²+3x-10=0; x²+5x-2x-10=0; x×(x+5)-2(x+5)=0; (x+5)×(x-2)=0; x+5=0; x-2=0; x=-5; x=0; x1=-5, x2=2; b) -15x²=2x-2=0; -15x²-2x-2=0; 15x²+2x+2=0; x=-2+-корень из 2²-4×15×2/2×15; x=-2+- корень из 120/30; x=-2+-корень из -116/30; xэR
3) (2 - 3х)(5х - 3) - х(2 - х) = 3 - 12х²,
10х - 6 - 15х² + 9х - 2х + х² - 3 + 12х² = 0,
-2х² + 17х - 9 = 0,
2х² - 17х + 9 = 0,
a = 2, b = -17, c = 9;
4) (1 - 2x)(2x - 4) - 3(2 - x) = 3 - 9x²,
2x - 4 - 4x² + 8x - 6 + 3x - 3 + 9x² = 0,
5x² + 13x - 13 = 0,
a = 5, b = 13, c = -13;
5) (5 + 2x)(4x - 1) - 2(2 + 3x) = -13x²,
20x - 5 + 8x² - 2x - 4 - 6x + 13x² = 0,
21x² + 12x - 9 = 0,
7x² + 4x - 3 = 0,
a = 7, b = 4, c = -3;
6) (2 - 6x)(x - 4) - 3x(1 - x) = -22x²,
2x - 8 - 6x² + 24x - 3x + 3x² + 22x² = 0,
19x² + 23x - 8 = 0,
a = 19, b = 23, c = -8.
Объяснение:
Обозначим скорость катера -- х км\ч, скорость течения реки---у км\ч. По течению реки скорость катера будет ( х+у) , против течения ---(х-у) , а в стоячей воде-х. Составим систему согласно условия:
{4(x+y)+3x=148 {5(x-y)-2x=50
{7x+4y=148 {3x-5y=50
Решим систему сложения. Первое уравнение системы умножим на 5, а второе -- на 4 .
35x+20y=740 + {12x-20y=200
47x=940
x=20 скорость катера
Подставим значение х в любое уравнение системы и найдём у:( например , в первое)
7·20+4у=148
140+4у=148
4у=148-140
4у=8
у=2 скорость течения реки
ответ: 20 км\ч ; 2 км\ч
Объяснение:
ax²+bx+c=0
a≠0
2t^2-15=0 - неполное, отсутствует коэффициент b
a = 2
b = 0
c = -15