Для решения нужно вспомнить. что:
Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой.
Поэтому h²=9·16=144
h=12
Из треугольников. на которые высота поделила искходный треугольник, по теореме Пиагора найдем катеты:
1)9²+12²=225
√225=15
2)16²+12²=400
√400=20
Катеты равны 15см и 20 см,
гипотенуза 9+16=25 см
Можно применить для решения другую теорему.
Катет прямоугольного треугольника есть среднее пропорциональное между
гипотенузой и проекцией этого катета на гипотенузу.
Найдем гипотенузу:
9+16=25 см
Пусть меньший катет будет х.
Тогда его проекция - 9см:
х²= 9·25=225
х=15 см
Больший катет пусть будет у:
у²=25·16=400
у=20 см
Объяснение:
вот так ка то)
В решении.
Объяснение:
В 8 часов, утром, из Лённеберги выехал Эмиль на лошади со скоростью 16 км/ч, а позже навстречу ему из их родного хутора Катхульта выехал отец на телеге со скоростью 14 км/ч, чтоб встретить Эмиля и постараться избежать очередной его шалости. Расстояние между Лённебергой и Катхультом 49 км, а встретились отец и сын на расстоянии 21 км от Катхульта и вместе поехали домой. В какое время отец Эмиля выехал из Катхульта?
Формула движения: S=v*t
S - расстояние v - скорость t – время
1) Найти время в пути отца:
21 : 14 = 1,5 (часа) = 1 и 1/2 часа = 1 час 30 минут.
2) Найти путь, который проехал сын до места встречи:
49 - 21 = 28 (км).
3) Найти время, которое сын провёл в пути:
28 : 16 = 1,75 (часа) = 1 и 3/4 часа = 1 час 45 минут.
4) Сын выехал в 8 часов, в пути был 1 час 45 минут, найти время встречи:
8:00 + 1:45 = 9:45 (часов).
5) На момент встречи отец был в пути 1 час 30 минут, найти время, в которое отец выехал из дома:
9:45 - 1:30 = 8:15 (часов).
Отец выехал из дома в 8 часов 15 минут.