Треугольник ba1c1 - равносторонний, все углы в нем 60 градусов. Это все решение (причем самое полное и точное из всех). Но можно не останавливаться на достигнутом, и соединить вершины этого треугольника с вершиной куба d. Получается пирамида, у которой все грани - равносторонние треугольники. То есть получился тетраэдр (или, если хотите, правильный тераэдр, хотя это уточнение и лишнее - тетраэдром называют именно правильную треугольную пирамиду с равными ребрами), вписаный в куб. Конечно же, можно и наоборот - для любого тетраэдра можно построить такой куб, что ребра тетраэдра будут диагоналями граней куба.Следствия.Во первых, скрещивающиеся ребра тетраэдра взаимно перпендикулярны (в данном случае, к примеру, bd перпендикулярно a1c1, поскольку a1c1 II ac, а ac и bd - диагонали квадрата abcd, точно также доказывается перпендикулярность остальных пар скрещивающихся ребер тетраэдра).Во вторых, отрезок, соединяющий середины скрещивающихся ребер тетраэдра, перпендикулярен этим ребрам и равен длине ребра тетраэдра, умноженной на √2/2. В самом деле, это отрезок, соединяющий центры противоположных граней куба, то есть он равен стороне куба, а ребро тетраэдра равно диагонали грани куба, откуда и получатеся соотношение длин.Конечно, к задаче это имеет косвенное отношение (точнее, не имеет ни какого), но уж больно неприятно выдавать решение, занимающее полстрочки.
ΔАВС. Если две биссектрисы пересекаются в точке К, то и третья биссектриса бдет проходить через эту точку, так как биссектрисы треугольника пересекаются в одной точке. ⇒ КС - биссектриса. Чтобы было удобно читать текст, обозначим ∠А=2α, ∠В=2β , ∠С=2ω ⇒ ∠ВАК=∠САК=α , ∠АВК=∠СВК=β , ∠ВСК=∠АСК=ω . ΔАВК: α+β+∠АКВ=α+β+146°=180° ⇒ α+β=180°-146°=34° ΔВКС: α+ω+∠ВКС=180° } ΔАКС: β+ω+∠АКС=180° } Сложим два последних равенства: α+β+2ω+∠ВКС+∠АКС=360° 34°+2ω=360°-(∠ВКС+∠АКС) 2ω=326°-(∠ВКС+∠АКС) ∠АКВ+∠ВКС+∠АКС=360° ⇒ ∠ВКС+∠АКС=360°-∠АКВ=360°-146°=214° 2ω=326°-214°=112° ω=56° ∠ВСК=56°
Решение основано на свойстве нуля функции f(x) = log(а, x).
График функции пересекает координатную ось Ox в точке (1; 0) при любом основании (но больше 0 и не равном 1).
ответ: A. В (1; 0).