
![A_1(7;7;8)\ ,\ A_2(6;6;8)\ ,\ A_3(8;5;8)\ ,\ A_4(8;1;1)\\\\\\6)\ \ \overline{A_1A_2}=(-1;-1;0)\ \ ,\ \ \ \overline{A_1A_3}=(1;-2;0)\\\\{}[\, \overline{A_1A_2}\times \overline{A_1A_2}\, ]=\left|\begin{array}{ccc}i&j&k\\-1&-1&0\\1&-2&0\end{array}\right|=0\cdot \vec{i}-0\cdot \vec{j}+(2+1)\cdot \vec{k}=3\vec{k}\\\\\\|\, \overline{A_1A_2}\times \overline{A_1A_2}\, |=\sqrt{0^2+0^2+3^2}=\sqrt9=3\\\\\\S_{A_1A_2A_3}=\dfrac{1}{2}\cdot 3=1,5](/tpl/images/1614/7229/32459.png)

1) (х-2)/(х²+4х-21)
ОДЗ: х²+4х-21≠0
x²+4x-21=0
x₁+x₂=-4
x₁*x₂=-21
x₁=-7; x₂=3
Дробь не имеет смысла, когда её знаменатель равен 0, потому, что на 0 делить нельзя.
ответ: x²+4x-21=0 при х∈{-7;3}
2) 5x²-8=(x-4)(3x-1)+8x
5x²-8=3x²-x-12x+4+8x
2x²+5x-12=0
D=5²-4*2*(-12)=25+96=121 √121=11
x₁=(-5+11)/2*2=16/4=1.5
x₂=(-5-11)/2*2=-6/4=--4
3) x²+2x+c=0 x₁=6
6²+2*6+c=0
36+12+c=0
48+c=0
c=-48
Проверка: х²+2х-48=0
х₁+х₂=-2
х₁*х₂=-48
х₁=6; х₂=-8
6+(-8)=-2; 6*(-8)=-48
1) (х-2)/(х²+4х-21)
ОДЗ: х²+4х-21≠0
x²+4x-21=0
x₁+x₂=-4
x₁*x₂=-21
x₁=-7; x₂=3
Дробь не имеет смысла, когда её знаменатель равен 0, потому, что на 0 делить нельзя.
ответ: x²+4x-21=0 при х∈{-7;3}
2) 5x²-8=(x-4)(3x-1)+8x
5x²-8=3x²-x-12x+4+8x
2x²+5x-12=0
D=5²-4*2*(-12)=25+96=121 √121=11
x₁=(-5+11)/2*2=16/4=1.5
x₂=(-5-11)/2*2=-6/4=--4
3) x²+2x+c=0 x₁=6
6²+2*6+c=0
36+12+c=0
48+c=0
c=-48
Проверка: х²+2х-48=0
х₁+х₂=-2
х₁*х₂=-48
х₁=6; х₂=-8
6+(-8)=-2; 6*(-8)=-48