По определению среднее арифметическое равно общей сумме членов деленное на их общее количество: откуда сумма n первых членов арифметической последовательности равна в частности отсюда второй член последовательности равен разность арифметической прогрессии равна значит искомая арифметическая прогрессия это арифметическая прогрессия с первым членов 2, и разностью арифметической прогрессии 4 (2, 6, 10, 14, 18, .....) ---------- /////////// маленькая проверочка схождения с формулой суммы членов прогрессии ////////// ответ: арифмитичесская прогрессия с первым членом 2 и разностью прогрессии 4
V=(40-X)(64-X)X - функция. найти максимум, х∈(0, 40). найдем производную от V=(40-X)(64-X)X=х³-104х²+2560х она равна 3х²-208х+2560 найдем стационарные точки , приравняв производную к 0 , и решив кв. ур-ние 3х²-208х+2560=0 1) х=(104+√(104²-3·64·40))/3=(104+√((8·13)²-3·64·40)))/3= =(104+√(8²(13²-3·40)))/3=(104+8√(13²-3·40))/3=(104+8√(169-120))/3= =(104+8·7)/3=160/3
2) х=(104-√(104²-3·64·40))/3=(104-56)/3=16 ОСТАЛОСЬ по достаточному условию экстремума убедиться, что х=16 - точка максимума, проверяем знаки производной при переходе через эту точку, решаем неравенство 3х²-208х+2560>0, или простыми вычислениями для значений х из соответствующих промежутков.)
откуда сумма n первых членов арифметической последовательности равна
в частности
отсюда второй член последовательности равен
разность арифметической прогрессии равна
значит искомая арифметическая прогрессия это арифметическая прогрессия с первым членов 2, и разностью арифметической прогрессии 4
(2, 6, 10, 14, 18, .....)
----------
///////////
маленькая проверочка схождения с формулой суммы членов прогрессии
//////////
ответ: арифмитичесская прогрессия с первым членом 2 и разностью прогрессии 4