М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
vaneeva06
vaneeva06
25.01.2020 03:07 •  Алгебра

Как строить примерно такие функции, как (4-х)/(х+2). только подробно, !

👇
Ответ:
Ququki
Ququki
25.01.2020

можно вот  так найдем асимптоту    функций она означает по какой прямой он будет расположена  для этого вычеслим предел при бесконечности +oo

lim x-> +oo (4-x)/(x+2)=поделим первое на х и второе

4/x-1/(1+2/x)=-1/1=-1

потому что при х стр к  оо  1/х =0 

То есть -1 это ее асимптота

График гипербола  найдем точки пересечения    с осью   х

 4-x/x+2=0

4-x=0

x=4

можно еще промежутки убывания и возрастания через производную 

 

 

4,6(58 оценок)
Ответ:

если знак деления обозначает дробь,то ты сначала строешь график у=4-х потом график у=х+2 находишь точки пересечения и пишешь их в ответе(вроде так,в учебнике что ли не обясняют?)

4,5(94 оценок)
Открыть все ответы
Ответ:
vadimash
vadimash
25.01.2020
Решение
1)  2cosx-1 < 0
cosx < 1/2
arccos(1/2) + 2πn < x < 2π - arccos(1/2) + 2πn, n ∈ Z
π/3 + 2πn < x < 2π - π/3 + 2πn, n ∈ Z
π/3 + 2πn < x < 5π/3 + 2πn, n ∈ Z
2)  sin2x - √2/2 < 0
 sin2x < √2/2 
- π - arcsin(√2/2) + 2πk < 2x < arcsin(√2/2) + 2πk, k ∈ Z
- π - π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
 - 5π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
 - 5π/8 + πk < x < π/8 + πk, k ∈ Z
3)  tgx<1
- π/2 + πn < x < arctg(1) + πn, n ∈ Z
- π/2 + πn < x < π/4 + πn, n ∈ Z
4,4(52 оценок)
Ответ:
ричбич4
ричбич4
25.01.2020
Решение
1)  2cosx-1 < 0
cosx < 1/2
arccos(1/2) + 2πn < x < 2π - arccos(1/2) + 2πn, n ∈ Z
π/3 + 2πn < x < 2π - π/3 + 2πn, n ∈ Z
π/3 + 2πn < x < 5π/3 + 2πn, n ∈ Z
2)  sin2x - √2/2 < 0
 sin2x < √2/2 
- π - arcsin(√2/2) + 2πk < 2x < arcsin(√2/2) + 2πk, k ∈ Z
- π - π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
 - 5π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
 - 5π/8 + πk < x < π/8 + πk, k ∈ Z
3)  tgx<1
- π/2 + πn < x < arctg(1) + πn, n ∈ Z
- π/2 + πn < x < π/4 + πn, n ∈ Z
4,5(9 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ