из левой части получена правая. Тождество доказано.
5. Пусть ширина х см, тода длина (х+6) см, если ширину увеличить на 5, то она станет равной (х+5) см, если длину увеличить на 2, она станет (х+6+2)=(х+8) /см/, отсюда уравнение (х+5)*(х+8)=75+х*(х+6); х²+8х+5х+40=х²+6х+75; 7х=35, х=5
Обозначим всю работу за 1 Пусть первая выполняет за час х , вторая выполняет за час у. Вместе они за час выполняют (х+у). За четыре часа 4·(х+у) Что и равно все работе,т. е 1 4(х+у)=1 Если же половину работы выполнит первая машинистка,а остаток- тоже половину вторая , то вся работа может быть напечатана за 9 часов. Решаем систему
Вторая система ответов не удовлетворяет условию, потому как по условию вторая машинистка работает менее эффективно. (в системе же 5/24 больше чем 1/24)
Значит первая за час выполняет 1/6 часть всей работы, а всю работу выполняет за 6 часов. Вторая за час выполняет 1/12 часть всей работы, а всю работу выполняет за 12 часов
1. а) (а – 4)(а + 6)=а²+6а-4а-24=а²+2а-24;
б) (b – 2)(b²+ 3b – 10)=b³+3b²-10b-2b²-6b+20=b³+b²-16b+20;
в) (4х – у)(6х + 4у)=24х²+16ху-6ху-4у²=24х²+10ху-4у²;
4. Докажите тождество
(y – 5)(y + 7) = y(y + 2) – 35.
(y – 5)(y + 7) =у²+7у-5у-35=у²+2у-35= y(y + 2) – 35
из левой части получена правая. Тождество доказано.
5. Пусть ширина х см, тода длина (х+6) см, если ширину увеличить на 5, то она станет равной (х+5) см, если длину увеличить на 2, она станет (х+6+2)=(х+8) /см/, отсюда уравнение (х+5)*(х+8)=75+х*(х+6); х²+8х+5х+40=х²+6х+75; 7х=35, х=5
Значит. ширина равна 5 см, а длина 5+6=11/см/