1)
Число сочетаний с повторениями из m=2 элементов по n=3
(n+m-1!/(m-1)!n!=(3+2-1!/(2-1)!3!=4!/1!3!=4
такие (перестановки не играют роли, а только сочетание количества элементов)
3 орла
2 орла, 1 решка
1 орел, 2 решки
3 решки
Условию задачи удовлетворяют 2 (первые) варианта из 4
вероятность=2/4=1/2
вероятность того,что орлов выпало больше чем решек = 1/2 = 0,5
2)
Если формул не помните, то просто рассмотрите все варианты выпадения орла и решки:
ооо
оор
оро
орр
роо
рор
рро
ррр
получаются 4 нужных варианта из 8 возможных
вероятность=4/8=1/2=0,5
Значит вероятность того, что мы извлечем первый шарик под номером 4, равна 0,25
Аналогично данную операцию можно "провернуть" и с другими шариками:
Вероятность того, что мы извлечем второй шарик под номером 2, равна 1/3
Вероятность того, что мы извлечем третий шарик под номером 1, равна 0,5
И вероятность того, что мы извлечем четвертый, последний шарик под номером 3, равна 1
Для того, чтобы нам узнать вероятность того, что шары будут извлечены в последовательности: 4, 2, 1, 3 - нам нужно перемножить каждую из вероятностей извлеченных шаров.
ответ: p≈0,042.