если в тригонометрической формуле встречается выражение , где — целое число, то вид тригонометрической функции не меняется; знак тригонометрической функции может меняться в зависимости, в какой четверти находилась данная функция. Например, (минус, потому что общий угол будет находиться в третьей четверти).если в тригонометрической формуле встречается выражение , где — целое число, то вид тригонометрической функции меняется; знак тригонометрической функции может меняться в зависимости, в какой четверти находилась данная функция. Например, (минус, потому что общий угол будет находиться во второй четверти).
Y = x^2 + 4x = 2 Здесь Все под один знак равно: y = x^2 + 4x - 2 Тогда графиком данной функции будет являться парабола! Приравниваем к 0 правую часть функции: x^2 + 4x - 2 = 0 Находим 2 точки параболы: m и n m = -b дробная черта 2a. ; -4 дроб. черта 2 = -2 n = 4 -8 -2 = -6 Получились 2 точки: A (-2;0) и B (-6;0); Далее находим центральную точку нашей параболы путем нахождения дискриминанта: D = (b/2)^2 - ac. ("/"-дробная черта) D = 4 - 1 (-2) D = 6 Это примернооо 2,4 квадратный корень. x1/2 = -b/2 +- корень из D и все разделить на a. x1/2 = -2 +- 2,4 /// 1 = / x1 = 0,4; x2 = -4.4 Дальше надо начертить систему координат, и расставить эти точки: A (-2;0); B (-6;0); C (-4,4; 0,4);
1) 39;
2) -1,44;
3) 187/324;
4) -11/20;
5) 0;
6) -27 3/36;
7) 800
Пошаговое объяснение:
1) 20² - 19² = (20 - 19)(20 + 19) = 1 * 39 = 39;
2) 3,5² - 3,7² = (3,5 - 3,7)(3,5 + 3,7) = (-0,2) * 7,2 = -1,44;
3) (7/9)² - (1/6)² = (7/9 - 1/6)(7/9 + 1/6) = 11/18 * 17/18 = 187/324;
4) (3/10)² - (4/5)² = (3/10 - 4/5)(3/10 + 4/5) = -1/2 * 11/10 = -11/20;
5) (2 1/7)² - (2 1/7)² = (2 1/7 - 2 1/7)(2 1/7 + 2 1/7) = 0 * 4 2/7 = 0;
6) (5 1/6)² - (7 1/3)² = (5 1/6 - 7 1/3)(5 1/6 + 7 1/3) = -13/6 * 75/6 = -27 3/36;
7) 54² - 46² = (54 - 46)(54 + 46) = 8 * 100 = 800