Щоб знайти проміжки зростання функції у = -х³ + 3х + 1, потрібно визначити, де похідна цієї функції є додатньою.
1. Спочатку знайдемо похідну функції: у' = -3х² + 3.
2. Розв'яжемо рівняння -3х² + 3 > 0, щоб знайти значення х, при яких похідна є додатньою.
-3х² + 3 > 0
-3(х² - 1) > 0
(х - 1)(х + 1) < 0
3. Знайдемо значення х, які задовольняють нерівність (х - 1)(х + 1) < 0:
x - 1 < 0 та x + 1 > 0
x < 1 та x > -1
Таким чином, проміжком зростання функції у = -х³ + 3х + 1 є (-1, 1).
Объяснение:
Объяснение:
х² = x+1
x²-x-1=0
D=1+4=5
D=√5
x = (1±√5)/2
х³ = 3х
x³-3x=0
x(x²-3)=0
x=0
x²=3
x=±√3