Пусть (2а+1) - первое натуральное нечетное число, тогда (2а+3) - второе, а (2а+5) - третье. (2а+1)(2а+3) - произведение первого и второго чисел, а (2а+3)(2а+5) - произведение второго и третьего чисел. По условию задачи произведение второго и третьего на 100 больше произведения первого и второго. Составляем уравнение (2a+3)(2a+5)=(2a+1)(2a+3)+100; 4a²+10a+6a+15=4a²+6a+2a+3+100; 4a²+16a+15=4a²+8a+103; 4a²+16a+15-4a²-8a-103=0; 8a-88=0; 8a=88; a=88/8; a=11. Дополнительные вычисления: 2а+1=2*11+1=22+1=23 - первое число; 2а+3=2*11+3=22+3=25 - второе число; 2а+5=2*11+5=22+5=27 - третье число. ответ: 23; 25; 27.
Пусть (2а+1) - первое натуральное нечетное число, тогда (2а+3) - второе, а (2а+5) - третье. (2а+1)(2а+3) - произведение первого и второго чисел, а (2а+3)(2а+5) - произведение второго и третьего чисел. По условию задачи произведение второго и третьего на 100 больше произведения первого и второго. Составляем уравнение (2a+3)(2a+5)=(2a+1)(2a+3)+100; 4a²+10a+6a+15=4a²+6a+2a+3+100; 4a²+16a+15=4a²+8a+103; 4a²+16a+15-4a²-8a-103=0; 8a-88=0; 8a=88; a=88/8; a=11. Дополнительные вычисления: 2а+1=2*11+1=22+1=23 - первое число; 2а+3=2*11+3=22+3=25 - второе число; 2а+5=2*11+5=22+5=27 - третье число. ответ: 23; 25; 27.
а) 9х^2-7x-2=0
D=(-7)^2-4*9*(-2)=49+72=121
x1=(11-(-7))/(2*9)=18/18=1
x2=(-11-(-7))/(2*9)=-2/9
б) 4х^2-х=0
D=(-1)^2-4*4*0=1
x1=(1-(-1))/(2*4)=2/8=0.25
x2=(-1-(-1))/(2*4)=0
в) 5х^2=45
D=0^2-4*5*(-45)=900
x1=30/(2*5)=30/10=3
x2=-30/(2*5)=-30/10=-3
г) х^2+18x-63=0
D=18^2-4*1*(-63)=324+252=576
x1=(24-18)/2=6/2=3
x2=(-24-18)/2=-42/2=-21