М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
karinademina8
karinademina8
19.10.2022 17:01 •  Алгебра

Вычислите определенный интеграл, используя его геометрическое содержание:
ОЧЕНЬ НУЖНО


Вычислите определенный интеграл, используя его геометрическое содержание: ОЧЕНЬ НУЖНО

👇
Открыть все ответы
Ответ:
sergeywrest51
sergeywrest51
19.10.2022

0).выделите корень уравнения, принадлежащий решению неравенства

х2  + 59х –122 ≤ 0.

решение: 1 способ.  3√х + 34 -  3√ х – 3 = 1

  (3√х + 34)3  - 3 (3√х + 34)2  3√ х – 3 + 3 (3√х + 34)  (  3√ х – 3)2  - (  3√ х – 3)3  = 1

(х + 34) - 3 (3√х + 34)  3√ х – 3 (3√х + 34)  -  3√ х – 3) – ( х – 3) = 1

    37 – 3  3√(х +34)(х-3) = 1

3√ х2  + 31х – 102 = 12

х2  + 31х – 102 =1728

х2  + 31х - 1830 = 0

х1= 30; х2= - 61 ответ: 30; - 61

проверка показывает, что оба числа являются корнями уравнения.

  2 способ.

  3√х + 34 -  3√ х – 3 = 1

    3√х + 34 = 1 +  3√ х – 3

  (  3√х + 34)3  = (1 +  3√ х – 3)3

х +34 = 1 + 33√х – 3 + 3(  3√ х – 3)2  + х – 3

  3√ х – 3 =а, то 3а2  + 3а – 36 = 0

а2  + а – 12 = 0

а1=3, а2=-4

3√ х – 3 =3, х=30

  3√ х – 3 = -4, х = - 61 ответ: 30; - 61

3 способ.

3√х + 34 -  3√ х – 3 = 1

х + 34 =у3, х – 3 =а3

  х + 34 =у3,

х – 3 =а3,

у – а = 1

37 = у3  – а3  ; у3  – а3= (у – а)(у2  +уа +а2)= (у – – а)2  +3уа)

37 = 1(1 + 3уа); уа =12.

  получаем, уа =12, у=4, а= 3 или у =-3, а = -4

у – а = 1

откуда, х – 3 = 27, х1=30

х – 3 = -64, х2  = - 61 ответ: 30; - 61

2.решите неравенство методом введения новой переменной: х - √х – 2 ≤ 0

решение: √х =а, а2  – а – 2≤ 0,

  + - +

  -1 2

- 1 ≤ а ≤ 2, - 1 ≤ √х ≤ 2, 0 ≤ х ≤ 4

3. решите неравенство по алгоритму: g(х)≥0

√f(х) ≤ g(х) ↔ f(х) ≥0

  f(х) ≤ g2(х)

√х2  – 3х – 18 < 4 – х, 4 – х ≥0,

х2  – 3х – 18 ≥0

х2  – 3х – 18 < 16 – 8х + х2

  х ≤ 4

х2  – 3х – 18 ≥0

х < 6,8

ответ: (-∞; - 3]

4. решите неравенство по алгоритму: g(х)≥0

√f(х) ≥ g(х) ↔ f(х) ≥ g2(х)

  f(х) ≥0

g(х) < 0

√ х – 2 < х – 4, х – 4> 0 или х – 4 ≤0

х – 2 > х2  – 8х + 16 х - 2≥0

х € (4; 6) х € [2; 4]

ответ: [2; 6)

  для решения. 1. решите уравнения, используя свойство корня n-ой степени: √ 11 + 3х – 5х2  = 3 ;   5√ х4  - 49 = 2 ; √ х2  –16 = - √ х – 4; (х2  – 4) √х + 1 = 0; √ 7 +  3√( х2  +7) = 3. найдите целый корень. найдите произведение корней. найдите сумму корней.

2. решите уравнение методом введения новой переменной: х2  + √ х2  +20 = 22.

3.решите уравнение методом умножения на сопряженное выражение:

√ 2х2  + 8х +7 - √ 2х2  – 8х +7 = 2х.

4. решите уравнение методом разложения подкоренного выражения на множители:

√ 2х2+ 5х +2 - √ х2  + х – 2 = √ 3х + 6 .

5. решите уравнение методом выделения полного квадрата в подкоренном выражении:

√ х + 5 + 2√ (х +4) - √ х + 8 - 4√( х +4) = √ х +4 .

7. решите неравенства:

√ - х2  – 3х +4 > 2;   5√х5  +х2  – 4 > х; 5х – 17 √х+5 + 31 < 0 ;

√х +4 ≥ 5 - √9 - х ; √х- 3 •  5√ 5 – х ≥0 ; √ х2  – 3х – 18 < 4 – х; √ х2  + 3х – 18 > 2х +3.

4,6(80 оценок)
Ответ:
supersattarova
supersattarova
19.10.2022
2x(x^2+y^2)dy=y(x^2+2x^2)dx
Классификация: дифференциальное уравнение первого порядка разрешенной относительно производной, однородное.

Убедимся, что данное уравнение однородное. Проверим условие однородности. Для этого домножим каждый x и каждый y на некоторого \lambda\ne 0~~-const
2\lambda x(\lambda^2x^2+\lambda^2y^2)dy=\lambda y(\lambda^2y^2+2x^2\lambda^2)dx\\ \\ 2\lambda^3 x(x^2+y^2)dy=\lambda^3y(y^2+2x^2)dx\\ \\ 2x(x^2+y^2)dy=y(x^2+2x^2)dx

Пусть y=ux, тогда y'=u'x+u. Получаем

2x(x^2+u^2x^2)(u'x+u)=ux(u^2x^2+2x^2)\\ 2(1+u^2)(u'x+u)=u(u^2+2)\\ \\ 2u'x+2u+2u^2u'x+2u^3=u^3+2u\\ 2xu'(1+u^2)=-u^3

Получили уравнение с разделяющимися переменными.
\displaystyle 2x(1+u^2)\frac{du}{dx} =-u^3 ~~~\Rightarrow~~~ \frac{(1+u^2)du}{u^3} =- \frac{dx}{2x}
Проинтегрируем обе части уравнения, имеем:
\displaystyle \int \frac{(1+u^2)du}{u^3} =-\int \frac{dx}{2x} ~~~\Rightarrow~~\int\bigg( \frac{1}{u^3} + \frac{1}{u} \bigg)du=-\int \frac{dx}{2x}\\ \\ \frac{1}{u^2}-2\ln|u|=\ln|x|

Получили общий интеграл относительно неизвестной функции u(x). Возвращаемся к обратной замене

\frac{x^2}{y^2}-2\ln| \frac{y}{x} |=\ln|x|  - общий интеграл и ответ.

xy'-2y-xy^3=0~~|:x\\ y'- \frac{2y}{x} -y^3=0
Классификация: Дифференциальное уравнение первого порядка разрешенной относительно производной, линейное неоднородное.

Применим метод Бернулли:
Пусть y=uv, тогда y'=u'v+uv' Получаем

u'v+uv'- \frac{2uv}{x} -u^3v^3=0\\ \\ v(u'- \frac{2u}{x} )+uv'-u^3v^3=0

1) u'-\frac{2u}{x} =0 - уравнение с разделяющимися переменными.

\displaystyle \frac{du}{dx} =\frac{2u}{x} ~~~\Rightarrow~~~ \int \frac{du}{u}=2\int \frac{dx}{x} ~~~\Rightarrow~~~ \ln|u|=2\ln|x|\\ \\ \ln|u|=\ln|x^2|\\ \\ u=x^2

2) uv'-u^3v^3=0\\
Подставляя u=x^2, имеем v'-x^4v^3=0 - уравнение с разделяющимися переменными

\displaystyle \frac{dv}{dx} =x^4v^3~~\Rightarrow~~~\int \frac{dv}{v^3} =\int x^4dx~~~\Rightarrow~~~- \frac{1}{2v^2} = \frac{x^5}{5} +C\\ \\ v= \frac{ \sqrt{5} }{ \sqrt{C-2x^5} }

y=uv= \dfrac{ \sqrt{5}x^2 }{ \sqrt{C-2x^5} } - общее решение.

Найдем теперь частное решение, подставляя начальные условия:
1=\dfrac{ \sqrt{5}\cdot 1^2 }{ \sqrt{C-2\cdot 1^5} } ~~~\Rightarrow~~~ C=7

\boxed{y=\dfrac{ \sqrt{5}x^2 }{ \sqrt{7-2x^5} } } - частное решение.
4,4(40 оценок)
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ