Обозначим: x-первое число, y- второе число. 30% от первого числа x· 3/10, 40% от второго числа y·4/10, запишем уравнение: x·3/10+y·4/10=10. Во втором случае первое число увеличили на 10%, оно стало равно 110%, 110% от первого числа x·11/10, второе число уменьшили на 20%, следовательно оно равно: 100%-20%=80%, 80% от второго числа y·8/10, составим уравнение:x·11/10+y·8/10=26. Решим систему с двумя неизвестными: x·3/10+y·4/10=10 ·10 x·11/10+y·8/10=26. ·10
3x+4y=100 ·(-2) 11x+8y=260
-6x-8y=-200 11x+8y= 260, складываем эти уравнения, 5x=60 x=12. найдем значение y. 3x+4y=100 4y=100-3x=100-3·12. 4y=64 y=16 ответ: первое число равно 12, второе равно 16
Пусть в силу условия (1) (2) где х, y - некоторые натуральные числа
Предположим что тогда из второго соотношения (2) следует что где k - некоторое натуральное число
откуда а значит число |16a-9b| сложное если и
Рассмотрим варианты 1) что невозможно - два последовательных натуральных числа не могут быть квадратами натуральных чисел (доказательство єтого факта =>x=1; y=0 ) 2) => k - ненатуральное -- невозможно 3) => k - ненатуральное - невозможно тем самым окончательно доказали,что исходное утверждение верно.
Случай когда Учитывая симметричность выражений a+b=b+a, ab=ba доказывается аналогично. Доказано
x-первое число,
y- второе число.
30% от первого числа x· 3/10,
40% от второго числа y·4/10, запишем уравнение:
x·3/10+y·4/10=10.
Во втором случае первое число увеличили на 10%, оно стало равно 110%,
110% от первого числа x·11/10,
второе число уменьшили на 20%, следовательно оно равно: 100%-20%=80%,
80% от второго числа y·8/10, составим уравнение:x·11/10+y·8/10=26. Решим систему с двумя неизвестными:
x·3/10+y·4/10=10 ·10
x·11/10+y·8/10=26. ·10
3x+4y=100 ·(-2)
11x+8y=260
-6x-8y=-200
11x+8y= 260, складываем эти уравнения,
5x=60
x=12.
найдем значение y.
3x+4y=100
4y=100-3x=100-3·12.
4y=64
y=16
ответ: первое число равно 12, второе равно 16