15
Объяснение:
В этой задаче важно правильно расставить точки А, Б, В, Г на круге. Обратите внимание, они не обязательно должны идти по порядку! Общая логика такая. Самая большая дуга (в данном случае АБ=60) должна охватывать или точку Г или точку В (см. рисунок), иначе выстроить дуги не получится. В результате, точка А будет лежать напротив точки Б, а точки В и Г автоматически расположатся напротив друг друга (как показано на рисунке).
Далее, по условию задания точно можно обозначить длины дуг АГ=35 и АВ=45. Дуга АБ=60 может пройти как через точку Г, так и через точку В (это нужно выяснить). Аналогично, дуга ВГ может проходить или через точку Б, или через точку А.
Дуга АБ может проходить как через Г, так и через В (результаты должны получаться равными). Если АБ проходит через Г, то сегмент ГБ=60-35=25 и дуга ВБ=40-25=15. Если же дуга АБ проходит через В, то длина ВБ=60-45=15. Все верно.
ответ: окончательным ответом будет (-25x^2-12x+25) / (-25x^2+5x)
Объяснение:
Сначала делаем то, что в скобках, а в скобках определяем главное. Сперва скобки и умножение. Под общий знаменатель, но сначала представим 25x^2-1 как две скобки 5х-1 и 5х+1. Далее из числителя 5х^2+х выносим за скобки х и получится х(5х+1). Разложим второй знаменатель х^3+125=(х+5)(x^2-5х+25). Если заменить знаменатели и числители на полученные выражения, то будут сокращения и получится дробь: 1/(5х-1) * х/(х+5). под общий знаменатель (5х-1)(х+5) так как между дробями УМНОЖЕНИЕ, то в числителе ничего НЕ меняется.
Второй шаг это из полученной выше дроби вычитаем другую дробь.
x\((x+5)*(5x-1)) - (x+5)\(5x^2-x) из знаменателя второй дроби выносим x. далее под общий знаменатель x(x+5)(5x-1) , числитель тогда x^2-(x+5)^2. Далее разложим x+5 и все в квадрате. x^2- x^2-10x-25 (cкобку сразу раскрываем). Сокращаем противоположные слагаемые (это допустим -5фа и 5аф ) выносим "-" перед дробь, потом раскрываем скобки в знаменателе, приводим подобные члены Должно получится: -(10x+25)/(5x^3+24x^-5x)
Это уже ответ полученный из скобок. Эту дробь мы делим на 5x/(x^2+5x). При делении вторая дробь переворачивается и деление становится умножением, поэтому полученную из скобок дробь мы умножаем на (x^2+5x)/5x
(5x^3+24x^-5x) представим как (x^2+5x)(5x-1)
(10x+25) представим как 5(2х+5)
в итоге:
- (5(2х+5))/(x^2+5x)(5x-1) * (x^2+5x)/5x сокращаем х^2+5x и пятерки.
получится: - (2x+5)/(5x-1)*1/x = -(2x+5)/(5x^2-x) - это ответ деления скобки на дробь.
дальше из полученной выше дроби вычитаем (25х+22)/(5-25х)
Объяснение:
найти четверть в како оно находится
760=360×2+40
получается первая четверть где значение синус положительное