М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
McVano
McVano
22.03.2021 13:42 •  Алгебра

Найдите значения выражения 2√3*7√5/√15

👇
Ответ:
Шишиuvuvgyuhuh
Шишиuvuvgyuhuh
22.03.2021

Писать особо нечего, все - во вложении


Найдите значения выражения 2√3*7√5/√15
4,4(14 оценок)
Ответ:
imputedchimi
imputedchimi
22.03.2021

2√3*7√5/√15 = 14√15/√15=14

или

(√4*3 * √49*5)/√15  = √12*245/√15=√2940/√15=√196

√196=14

 

4,8(67 оценок)
Открыть все ответы
Ответ:
Пакмен007
Пакмен007
22.03.2021

Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.

1-ое свойство, которое понадобится

a+c \equiv b + d \ (mod \ m)

То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.

2-ое свойство, которое нам понадобится:

ac \equiv bd \ (mod \ m)

То есть довольно аналогичная вещь в произведении

На нашем примере все увидим

a = 5\cdot 2^{51}+21\cdot 32^{45}

Находим остатки по модулю 31

Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, 16 \equiv (-1) \ (mod \ 17), но сейчас это не нужно), нам повезло, это 32

Учитываем, что 32 \equiv 1 \ (mod \ 31), получаем

5\cdot 2^{51} = 5\cdot 2^1 \cdot 2^{50}=10 \cdot 2^{10\cdot 5} = 10 \cdot (2^{5})^{10}= 10\cdot 32^{10} \equiv 10 \cdot 1^{10} \ (mod \ 31)

То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым

21\cdot 32^{45} \equiv 21 \cdot 1^{45}\ (mod \ 31) \equiv 21 \ (mod \ 31)

Остаток 21, чудесно. Выполняем последний шаг.

5\cdot 2^{51}+21\cdot 32^{45} \equiv 10+21 \ (mod \ 31) \equiv 31 \ (mod \ 31) \equiv 0 \ (mod \ 31)

То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.

4,6(78 оценок)
Ответ:
botvinaanna80
botvinaanna80
22.03.2021
 Сложение рациональных чисел обладает переместительным и сочетательным свойствами. Иными словами, если   а ,   b   и   c   — любые рациональные числа, то  
 а + b   =   b + а ,             а + (b + с)   =   (а + b) + с .  

Прибавление нуля не изменяет числа, а сумма противоположных чисел равна нулю. Значит, для любого рационального числа имеем:  
                                  а + 0   =   а ,         а + (– а)   =   0 .  

Умножение рациональных чисел обладает переместительным и сочетательным свойствами. Если,   а ,   b   и   c   рациональные числа, то: 

                                          ab   =   ba ,       a(bc)   =   (ab)c .  
    Умножение на   1   не изменяет рационального числа, а произведение числа на обратное ему число равно 1 . Значит, для любого рационального числа а имеем: 

                    а • 1   =   а ;  

        Умножение числа на нуль дает в произведении нуль, т. е. для любого рационального числа а имеем:  

                          а • 0   =   0 ;    
Произведение может быть равно нулю лишь в том случае, когда хотя бы один из множителей равен нулю:    

                если   а • b   =   0 ,   то либо   а = 0 ,   либо     b = 0  
                (может случиться, что и   а = 0 ,   и   b = 0 ) .    
Умножение рациональных чисел обладает и распределительным свойством относительно сложения. Другими словами, для любых рациональных чисел   а ,   b   и   c   имеем:  

                                      (а + b)с   =   ас + bс.  
4,7(13 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ