М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
adadad2
adadad2
22.03.2021 13:42 •  Алгебра

Найти производную: а) у=7х^5+3х^4-5/7х+4; б) у=кореньх(-2х+1)

👇
Ответ:
Tatuhenka3
Tatuhenka3
22.03.2021
Найти производную

1) 
\displaystyle y`=(7x^5+3x^4- \frac{7}{5}x+4)`=7*5x^4+3*4x^3- \frac{7}{5}=\\\\=35x^4+12x^3- \frac{7}{5}

или 
\displaystyle y`=(7x^5+3x^4- \frac{7}{5x}+4)`=7*5x^4+3*4x^3- \frac{7}{5}*( \frac{-1}{x^2})=\\\\=35x^4+12x^3+ \frac{7}{5x^2}

2) 
\displaystyle y`=( \sqrt{x}*(-2x+1))`= ( \sqrt{x} )`(-2x+1)+(-2x+1)` \sqrt{x} =\\\\= \frac{1}{2 \sqrt{x} }(-2x+1)-2 \sqrt{x} = \frac{-2x+1-4x}{2 \sqrt{x}}= \frac{-6x+1}{2 \sqrt{x} }
4,8(14 оценок)
Открыть все ответы
Ответ:
homictana0
homictana0
22.03.2021
Для того, чтобы найти функцию, обратную данной. надо х и у поменять местами, и вновь выразить у через х:
y = (2x-1) / (x+3)
x = (2y-1) / (y+3) - выражаем теперь у через х:
x(y+3) = 2y - 1
y(2-x) = 3x+1
y = (3x+1) / (2-x) - обратная функция.
Теперь необходимо ее построить.
1) Найти точки экстремума и (или) точки перегиба:
y' = [3*(2-x) + (3x+1) ] / (2-x)^2 = [6-3x+3x+1] / (2-x)^2 = 7/(2-x)^2 - производная всегда положительная, значит функция у возрастает на всей области определения.
2) ОДЗ: 2-x # 0, x # 2. Значит прямая х=2 - ассимптота функции у.
3) Нули функции: y=0, 3x+1=0, x=-1/3. Точка (-1/3; 0).
4) Пересечение с осью Оу: х=0, у=1/2. Точка (0; 1/2)
4,7(7 оценок)
Ответ:
Vasianeumaha
Vasianeumaha
22.03.2021
Решение
Находим первую производную функции:
y' = (x-5)² * (e^x) + (2x - 10) * (e^x)
или
y' = (x - 5) * (x - 3) * (e^x)
Приравниваем ее к нулю:
 (x - 5) * (x - 3) * (e^x) = 0
e^x ≠ 0
x - 3 = 0,  x₁ = 3
x - 5 = 0,  x₂ = 5
Вычисляем значения функции 
f(3) = - 7+4 * e³
f(5) = - 7
ответ: fmin = -7, fmax = - 7+4 * e³
Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную:
y'' = ( x - 5)² * (e^x) + 2 * (2x - 10) * (e^x) + 2 *  (e^x)
или
y'' = (x² - 6x + 7) * (e^x)
Вычисляем:
y''(3) = - 2 * (e³) < 0 - значит точка x = 3 точка максимума функции.
y''(5) = 2 * (e⁵) > 0 - значит точка x = 5 точка минимума функции.
4,8(69 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ