1) 5*2*sin x*cos x + 4*cos^2 x =0 2cosx*(5sin x+ 2 cosx)=0 а) cos x = 0 x1= пи/2 +пи*n, где n =0, +-1,+-2, б) 5sin x+2 cos x =0 5 sin x = -2 cos x sinx/cos x = -2/5 tg x = -0,4 x2 = arc tg (-0,4) + пи*n, где n =0, +-1,+-2, 2) 6 cos 2x- 3 cos ^2 x +5 =0 6*(cos^2 x-1) -3 cos^2 x +5 =0 6cos ^2 x -6 -3 cos ^2 x +5 =0 3 cos ^2 x -1 =0 cos ^2 x = 1/3 cos x = +-1/3 x1 = arccos (1/3) +2*пи*n, где n =0, +-1,+-2, x2 = - arccos (1/3) +2*пи*n, где n =0, +-1,+-2, x3 = arccos (-1/3) +2*пи*n, где n =0, +-1,+-2, x4 = - arccos (-1/3) +2*пи*n, где n =0, +-1,+-2, 3) cosx-21sinx-9=0 cos x = корень(1- sin^2 x) корень(1- sin^2 x) -21sin x - 9 =0 корень(1- sin^2 x) = -21sin x + 9 возведем обе части уравнения в квадрат 1-sin^2 x = 441 sin^2 x +378sin x +81 442 sin^2 x +378 sin x +80 =0 221 sin^2 x+189 sin x+40 = 0 Пусть t = sin x, тогда модуль t не больше 1 221 t^2 +189t +40 =0 D = 189^2-4*221*40 = 361 корень(D) = 19 t1= (-189+19)/(2*221)= -170/442 = 85/221= -5/13 t2= (-189-19)/(2*221) = -208/442 = -104/221= -8/17 cos x=-5/13 x1= arc cos(-5/13)+2*пи*n, где n =0, +-1,+-2, x2= - arc cos(-5/13)+2*пи*n, где n =0, +-1,+-2, x3= arc cos(-8/17)+2*пи*n, где n =0, +-1,+-2, x2= - arc cos(8/17)+2*пи*n, где n =0, +-1,+-2,
x+y=5 (1)
xy = -36 (2)
из (1) y=5-x, подставляем в (2) :
x(5-x) = -36
5x-x² = -36
x²-5x-36=0
D=25+144 =169 √D=13
x1=(5+13)/2=9 x2=(5-13)/2= -4
y1=5-9 = -4 y2=5-(-4) =5+4=9
ответ: (x=9 y = -4) ; ( x=-4 y=9)
2)
x²+y²=25 (1)
x+y= -1 (2) ---> y= -x-1 подставляем в (1)
x²+(-x-1)² =25
x²+x²+2x+1 = 25
2x²+2x-24=0
x²+x-12=0
D=1+48=49 √D=7
x1=(-1+7)/2=3 x2=(-1-7)/2=-4
y1=-3-1=-4 y2=-(-4)-1=4-1=3
ответ:
(x=3, y=-4); ( x=-4, y=3)