Решение
Пусть скорость мотоциклиста x км/ч, тогда скорость велосипедиста (x–45) км/ч.
Расстояние между городами равно 60 км, тогда время в пути, которое затратили мотоциклист и велосипедист, равно соответственно 60/x часа и 60/(45 – x) часа.
Так как велосипедист был в пути на 3 часа дольше, чем мотоциклист.
Составим и решим уравнение:
60/(x – 45) - 60/x = 3
x ≠ 45, x ≠ 0
(60x – 60x + 2700 – 3x^2 + 135x) / x(x – 45) = 0
x² – 45x – 900 = 0
x₁= - 15 не удовлетворяет условию задачи
x₂ = 60
Итак, скорость мотоциклиста 60 км/ч,
60 - 45 = 15 км/ч. - скорость велосипедиста
ответ: 15 км/ч.
1) а)√(61,4)≈7,8;
Это число находится на числовой прямой между 7 и 8.
б)√(10)-2≈1,2;
Это число находится на числовой прямой между 1 и 2.
2)
\sqrt{12} y - \sqrt{48} y + \sqrt{108} y =2 \sqrt{3} y - 4 \sqrt{3} y + 6 \sqrt{3} y = 4 \sqrt{3} y
12
y−
48
y+
108
y=2
3
y−4
3
y+6
3
y=4
3
y
3)
\begin{gathered}- 3 \sqrt{5} = - \sqrt{45} \\ - 4 \sqrt{3} = - \sqrt{48} \\ - 2 \sqrt{11} = - \sqrt{44}\end{gathered}
−3
5
=−
45
−4
3
=−
48
−2
11
=−
44
( - \sqrt{48} ) < ( - \sqrt{45}) < (- \sqrt{44} )(−
48
)<(−
45
)<(−
44
)
4)
\sqrt{3} (4 \sqrt{3} - 2 \sqrt{5} ) + \sqrt{60} = 4 \times 3 - 2 \sqrt{15} + 2 \sqrt{15} = 12
3
(4
3
−2
5
)+
60
=4×3−2
15
+2
15
=12
5(
а) При х≤0.
б) см. фото
в) При у=2 х=-4, при у=2,5 х=-6,25