Чтобы найти вероятность, нужно количество благоприятных событий разделить на количество всех возможных событий.
Игральный кубик имеет 6 граней, значит при его бросании может выпасть либо 1, либо 2, либо 3, либо 4, либо 5, либо 6 - то есть количество всех возможных событий = 6.
По условию нам нужны только четные числа. В диапазоне от 1 до 6 всего 3 четных числа - 2, 4, 6, значит, количество благоприятных событий = 3.
Итак, количество благоприятных событий - 3, общее количество всех возможных событий - 6.
В числитель записываем благоприятные события (3), в знаменатель - все возможные события (6).
Найдем вероятность.
- вероятность того, что при бросании кубика Ире выпадет четное число очков.
Во-первых, обозначим стороны прямоугольника: Пускай длина - a, ширина - b. Если к длине a отнять 4, а к ширине b прибавить 7. То получится квадрат. У квадрата все стороны равны! Обозначим стороны данного квадрата: Длина: a - 4 Ширина: b + 7. Ширина равняется длине у квадрата. Значит:
Еще, знаем что площадь квадрата равна 100. То есть:
Создадим систему уравнений из этих сведений:
Выразим из второго уравнения a:
Подставим в первое уравнение:
Сторона b равняется трём. Есть еще один корень у этого уравнения, но его не рассматриваем, получатся отрицательные значение. Так как, сторона квадрата равна b + 7, то сторона будет 3 + 7, а это 10.
Можем проверить, найдём еще сторону прямоугольника a = b + 11 a = 3 + 11 = 14 Подставим в первое уравнение:
Чтобы найти вероятность, нужно количество благоприятных событий разделить на количество всех возможных событий.
Игральный кубик имеет 6 граней, значит при его бросании может выпасть либо 1, либо 2, либо 3, либо 4, либо 5, либо 6 - то есть количество всех возможных событий = 6.
По условию нам нужны только четные числа. В диапазоне от 1 до 6 всего 3 четных числа - 2, 4, 6, значит, количество благоприятных событий = 3.
Итак, количество благоприятных событий - 3, общее количество всех возможных событий - 6.
В числитель записываем благоприятные события (3), в знаменатель - все возможные события (6).
Найдем вероятность.
ответ: вероятность равна 0,5.