Составим уравнение:
x+7x=40
8x-40=0
x=40/8
x=5
8<x<20 км.
Объяснение:
Пусть x км проплыли туристы по течению реки, тогда против течения они проплыли (20−x) км.
7−1 = 6 км/ч — скорость лодки против течения реки;
7+1 = 8 км/ч — скорость лодки по течению реки.
Чтобы найти время, надо расстояние поделить на скорость, поэтому:
20−x6 ч. — время, затраченное туристами на путь против течения реки;
а x8 ч. — время, затраченное туристами на путь по течению реки.
Зная, что в пути туристы были менее трёх часов, составим неравенство:
20−x6+x8<3.
Чтобы избавиться от дроби, умножим обе части неравенства на 48.
(20−x6+x8)⋅48<3⋅48;
20−x6⋅48+x8⋅48<144;
8⋅(20−x)+6⋅x<144;
160−8x+6x<144;
−2x<−16
x>8.
Правильный ответ: 8<x<20 км.
Пусть после отлива воды стало х вёдер воды, тогда до отлива было 7х вёдер. По условию задачи всего 40 вёдер. Составим и решим уравнение:
х+7х=40
8х=40
х=5
5(вёдер) - отлили.
ответ: 5 вёдер воды отлили.