В решении.
Объяснение:
Функцію задано формулою y = 1/4 * x. Знайдіть:
1) значення у, якщо x = 8; 2; -4; -3;
а) y = х/4; х = 8;
у = 8/4 = 2;
При х = 8 у = 2;
б) y = х/4; х = 2;
у = 2/4 = 0,5;
При х = 2 у = 0,5;
в) y = х/4; х = -4;
у = -4/4 = -1;
При х = -4 у = -1;
г) y = х/4; х = -3;
у = -3/4 = -0,75;
При х = -3 у = -0,75;
2) значення x,при якому y дорівнює -2; -1/4; 0; 16;
а) y = х/4; у = -2;
-2 = х/4
х = -2 * 4
х = -8;
у = -2 при х = -8;
б) y = х/4; у = -1/4;
-1/4 = х/4
х = -1/4 * 4
х = -1;
у = -1/4 при х = -1;
в) y = х/4; у = 0;
0 = х/4
х = 0 * 4
х = 0;
у = 0 при х = 0;
г) y = х/4; у = 16;
16 = х/4
х = 16 * 4
х = 64;
у = 16 при х = 64.
x+3=x^2+2x-3 x^2+2x-3>0
x^2+2x-3-x-3=0 x^2+2x-3=0
x^2+x-6=0 x₁+x₂=-2
x₁+x₂=-1 x₁*x₂=-3
x₁*x₂=-6 x₁=-3; x₂=1 => x<-3; x>1
x₁=-3 - не входит в ОДЗ x>1
x₂=2
x=2
log_2(2x-1)-2=log_2(x+2)-log_2(x+1) ОДЗ: 2x-1>0 => x>0.5
log_2(2x-1)-log_2(4)= log_2(x+2)-log_2(x+1) x+2>0 => x>-2 log_2((2x-1)/4)=log((x+2)/(x+1)) x+1>0 => x>-1 (2x-1)/4=(x+2)/(x+1) x>0.5
(2x-1)(x+1)=4(x+2)
2x^2+x-1-4x-8=0
2x^2-3x-9=0
D=(-3)^2-4*2*(-9)=81 √81=9
x₁=3
x₂=-1.5 - не входит в ОДЗ
х=3
log_5(2x^2-x)/log_4(2x+2)=0 ОДЗ: 2x^2-x>0 => x>0.5
log(4)log(2x^2-2)/log(5)log(2x+2)=0 2x+2>0 => x>-1
log(2x^2-x)/log(2x+2)=0
log(2x^2-x)=0
log(2x+2)≠0
2x^2-x=1
2x^2-x-1=0
D=9
x₁=1
x₂=-0.5 - не входит в ОДЗ
x=1
log_2x(x^2+x-2)=1 ОДЗ: 2x>0 => x>0
log_2x(x^2+x-2)=log_2x(2x) x^2+x-2>0
x^2+x-2=2x x^2+x-2=0
x^2-x-2=0 x₁+x₂=-1
x₁+x₂=1 x₁*x₂=-2
x₁*x₂=-2 x₁=-2; x₂=1
x₁=2 x>1
x₂=-1 - не входит в ОДЗ
x=2