ответ: 12√39 (ед. площади)
Объяснение:
Прямоугольный треугольник с катетами 3 и 4 - египетский, его гипотенуза 5 ( проверьте по т.Пифагора).
Проекция ВС наклонной В1С перпендикулярна СА. По т. о 3-х перпендикулярах В1С⊥СА. Треугольник В1СА - прямоугольный с углом В1АС=60°. В1С=АС•tg60°=4√3. Т.к. призма прямая, боковые ребра перпендикулярны основаниям, поэтому треугольник В1ВС прямоугольный. По т. Пифагора В1В=√(B1C²-BC²)=√[(4√3)²-3²]=√39
Боковое ребро прямой призмы является её высотой, а её боковые грани - прямоугольники.
Площадь боковой поверхности призмы находят умножением её высоты на периметр основания.
S(бок)=В1В•(АВ+ВС+АС)=√39•12=12√39 (ед. площади)
cos^2x-8cosx+7=0
получаем квадратичное уравнение решаем через дискриминант
пусть cosx=y
y^2-8y+7=0
y1=-1
y2=-7
cosx=-1 cosx=-7
x=pi+2pi*n, n пренадлежит z решений нет
ответ pi+2pi*n,
2) 2cos^2(x-pi)+3sin(pi+x)=0
-2cos^2x-3sinx=0
получаем квадратичное уравнение решаем через дискриминант
пусть cosx=y
сам дорешаешь
3) 3sin^2(x-3pi/2)-cos(x+4pi)=0
-3cos^2x-cosx=0
4) 2tg^2(3pi/2+x)+3tg(pi/2+x)=0
2ctg^2x-3ctgx=0
5) 2sin^2 x+5sin(3pi/2-x)-2=0
2sin^2 x-5cosx-2=0
тут я не знаю