Надеюсь
Объяснение:
Номер 103:
Пусть первый цех изготовил х деталей, тогда второй 3х, а третий 1,5х
х + 3х + 1,5х = 729
5,5х = 729
х = 144 - деталей изготовил первый цех
144 × 3 = 432 - деталей изготовил второй цех
432 ÷ 2 = 216 - деталей изготовил третих цех
Номер 104:
Пусть каждая боковая сторона равнобедренного треугольника равна x см.
Основание составляет 3/4 боковой стороны или 0,75x см.
Известно, что периметр равен 22 см.
Решаем уравнение.
2x + 0,75x = 22,
2,75x = 22,
x = 22 : 2,75,
x = 8 (см) - боковая сторона.
0,75 * 8 = 6 (см) - основание.
ответ: Стороны треугольника 8 см, 8 см и 6 см.
Номер 105:
120 ÷ 2 = 60м полуметр (длины двух смежных сторон)
х ширина
2х длина
х + 2х = 60
х = 20м ширина
20 × 2 = 40м длина
ответ: 1004 нуля, 4000 троек, 4001 единица.
Найдём число цифр 3.
Для этого удобно применить метод индукции. Пусть во всех числах От 1 до 10^k-1 , то есть k значное, есть x цифр 3. Найдём сколько цифр 3 находится во всех числах до 10^(k+1)-1 (k+1 значное) . Поскольку у нас есть всего 10(k+1)-ых (0-9) разрядов, а один из этих разрядов соответствует цифре 3, то общее число троек равно : 10*x +10^(k+1)
Среди чисел от 0 до 9 только одна тройка. Тогда общее число троек от 0 до 99 :10*1 +10=20. От 0 до 999 : 10*20+10^2=300 .
От 0 до 9999 : 10*300 +1000=4000.
Таким образом от 1 до 10000 : 4000 цифр 3. Для цифры 1 тот же самый принцип, что и с цифрой 3, только учитываем число 10000 , таким образом : 4001 единица. Для нулей все немного сложнее. Нужно учитывать нули при пустых разрядах. Например : 4029. При учете этих нулей можно легко ошибиться. Но я предлагаю использовать интересную обходную дорогу. Всего в числах от 0 до 9999: 4000 цифр : 1,2,3...9 . Это понятно из вышеуказанного алгоритма. А теперь посчитаем сколько всего в числах от 0 до 9999 вообще всех цифр! Всего 10 однозначных, 90 двузначных , 900 трехзначных и 9000 четырехзначных. Таким образом общее число цифр :10 +90*2 +900*3 +9000*4 =38890
Таким образом цифру 0 написали :
38890 - 4000*9 = 2890
В числах от 1 до 10000 : 2893