Пусть в силу условия (1) (2) где х, y - некоторые натуральные числа
Предположим что тогда из второго соотношения (2) следует что где k - некоторое натуральное число
откуда а значит число |16a-9b| сложное если и
Рассмотрим варианты 1) что невозможно - два последовательных натуральных числа не могут быть квадратами натуральных чисел (доказательство єтого факта =>x=1; y=0 ) 2) => k - ненатуральное -- невозможно 3) => k - ненатуральное - невозможно тем самым окончательно доказали,что исходное утверждение верно.
Случай когда Учитывая симметричность выражений a+b=b+a, ab=ba доказывается аналогично. Доказано
Ну смотри. Давай представим первое из неизвестных чисел как х. Поскольку они последовательные, т.е. идут друг за другом, значит одно из них больше другого на единицу, значит его можно представить как х+1. Далее нам известно, что произведение двух этих чисел на 271 больше их суммы. Говоря математическим языком х(х+1)-271=х+х+1. Почему здесь не сумма, а вычитание? Т.к. говорится что произведение больше, чем сумма, следовательно если вычесть из произведения 271 получится их сумма. А далее идет простое уравнение.
где х, y - некоторые натуральные числа
Предположим что
тогда из второго соотношения (2) следует что
где k - некоторое натуральное число
откуда
а значит число |16a-9b| сложное если
и
Рассмотрим варианты
1)
что невозможно - два последовательных натуральных числа не могут быть квадратами натуральных чисел
(доказательство єтого факта
=>x=1; y=0
)
2)
=> k - ненатуральное -- невозможно
3)
=> k - ненатуральное - невозможно
тем самым окончательно доказали,что исходное утверждение верно.
Случай когда
Учитывая симметричность выражений a+b=b+a, ab=ba
доказывается аналогично.
Доказано