Дано неравенство: 6x² − x - 5 > 0.
Находим корни квадратного трёхчлена: 6x² − x - 5 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:
D=(-1)^2-4*6*(-5)=1-4*6*(-5)=1-24*(-5)=1-(-24*5)=1-(-120)=1+120=121;
Дискриминант больше 0, уравнение имеет 2 корня:
x1=(√121-(-1))/(2*6)=(11-(-1))/(2*6)=(11+1)/(2*6)=12/(2*6)=12/12=1;
x2=(-√121-(-1))/(2*6)=(-11-(-1))/(2*6)=(-11+1)/(2*6)=-10/(2*6)=-10/12=-(5/6)≈-0.833333.
откуда x1 = 1 и x2 = -(5/6).
Раскладываем левую часть неравенства на множители: 6(x – 1) (x +(5/6)) > 0. Точки -5/6 и 1 разбивают ось X на три промежутка:
ОО⟶Х
-5/6 1
Точки -5/6 и 1 выколоты. Это связано с тем, что решаемое неравенство — строгое (так что x не может равняться -5/6 или 1). Далее определяем знаки левой части неравенства на каждом из промежутков
+ – +
ОО⟶Х
-5/6 1
Получаем: x < -5/6 или x > 1.
ax² + bx + c = a(x - x₁)(x - x₂)
Находим корни:
а² + 5а + 6 = 0
По теореме Виета:
{ a₁ + a₂ = -5
{ a₁ × a₂ = 6
a₁ = -3
a₂ = -2
Подставляем в формулу:
а²+5а+6 = (a - (-3))(a - (-2)) = (a+3)(a+2)
Теперь, трёхчлен в знаменателе является полным квадратом:
а² + 4a + 4 = (a + 2)²
Подставляем разложенные на множители квадратные трехчлены в изначальное выражение:
(а² + 5а + 6) / (а² + 4a + 4) =
(a+3)(a+2) / ( (a+2)² ) = (a+3) / (a+2)
ответ: (a+3) / (a+2)