: если k>0, функция возрастает, k<0 - убывает. Всё просто. Т.е. в убывании обе функции линейные, k<0 и в первом (k=-7), и во втором
. С этим разобрались. Теперь к возрастанию. Я не знаю, в каком Вы классе, постараюсь объяснить доступно. Чтобы определить возрастание/убывание функции, нужно взять значения
, два произвольных числа, но
. Пусть мы имеем функцию
, тогда вычисляем значения функции в этих двух точках, имеем
и
, так вот, если
, тогда функция возрастающая, если же
, то она убывающая, но только ПРИ УСЛОВИИ, что она монотонна на всей области определения (т.е. ТОЛЬКО возрастает или ТОЛЬКО убывает), в противном случае мы говорим о ПРОМЕЖУТКАХ возрастания и убывания. 1)
, т.е. функция возрастающая. А вот задание с
не совсем корректно, так как эта функция возрастает только при x>0, при x<0 она убывает, x=0 - Точка экстремума. Если уж брать математический анализ, то легко взять производную и исследовать функцию на "скорость изменения" (алгебраический смысл производной)
. Если производная в некоторой точке отрицательная, то функция убывает, если производная положительная, то функция возрастает, если производная равна 0, то это точка экстремума. Очевидно, что при x<0 функция убывает, при x>0 возрастает. Если же доказывать возрастание на промежутке x>0, тогда действуем, как и в первом случае (только не берем значения из ненужного нам промежутка):
, функция возрастает, что и требовалось доказать.
Будем решать в минутах:
1 час 45 минут=105 минут
1 час 15 минут=75 минут
2 часа 55 минут=175 минут
a,b,c,d - производительности 1,2,3,4 трубы
Составляем уравнения:
a+b+c=1/105
a+b+d=1/75
c+d=1/175
Будем решать систему уравнений метод сложения.То есть, складываем все левые части и приравниваем их к сумме вторых частей уравнений:
a+b+c+a+b+d+c+d=1/175+1/75+1/105
2a+2b+2c+2d=1/105+1/75+1/175
2(a+b+c+d)=1/35
a+b+c+d=1/35:2=70
Значит, если включить все 4 трубы, то бассейн заполнится за 70 минут или 1 час и 10 минут.