ДОБАВИТЬ В ИЗБРАННОЕ
Урок по теме: «Функция у=kx и её график»
Цель – систематизировать знания по изученной теме; развивать умения находить значение функции по заданному значению аргумента, значение аргумента, если задана функция.
Ход урока:
1.Актуализация знаний.
Повторить определение функции, аргумента задания функции, понятие графика функции.
2. Устная работа.
1) Функция задана формулой у=5х-4. Закончите решение:
у(2)=5·2-4=…
у(3)=5·3-4=…
у(4)=…
2) Функция задана формулой у=-3х+2.Найдите значение аргумента, при котором у=13.
Подставим вместо у число 13 и получим 13=-3х+2.Доделайте задание.
3) Функция задана формулой у= 2х. Заполните таблицу:
3. Новый материал.
1) Построим график функции у=3х.
а) Заполните таблицу:
б) Задайте координатную плоскость и изобразите на ней полученные координаты.
в) Проведите через полученные точки линию.
г) Какая фигура получилась в результате построения? Пересекает ли она оси координат? А через что она проходит? Сколько можно задать точек для построения графика функции?
2) Выводы запишите самостоятельно (графиком функции у=кх является прямая, которая проходит через начало координат; для построения графика функции у=кх достаточно двух точек).
3) Исследовательская работа: Влияние коэффициента пропорциональности k на расположение графика функции в координатной плоскости.
y=kx
к>0
у=2·х
к=0
у=0·х
к<0
у=-2·х

Запишите выводы.
4. Закрепление умений и навыков:
Учебник Колягина и др. №558,559.
5. Обобщение по теме и подведение итогов.
6. Домашнее задание: №560.
В решении.
Объяснение:
Решить неравенство:
1) х² - 7х - 30 > 0;
Приравнять к нулю и решить квадратное уравнение:
х² - 7х - 30 = 0
D=b²-4ac = 49 + 120 = 169 √D=13
х₁=(-b-√D)/2a
х₁=(7-13)/2
х₁= -6/2
х₁= -3;
х₂=(-b+√D)/2a
х₂=(7+13)/2
х₂=20/2
х₂= 10;
Уравнение квадратичной функции, график - парабола, ветви направлены вверх, пересекают ось Ох в точках х= -3 и х=10.
Функция > 0, как в неравенстве, при х от -∞ до х= -3 и от х=10 до +∞ (график выше оси Ох).
Решения неравенства: х∈(-∞; -3)∪(10; +∞).
Неравенство строгое, скобки круглые.
2) (2х + 1)(х - 4) <= 0
2х² - 8х + х - 4 <= 0
2х² - 7х - 4 <= 0
Приравнять к нулю и решить квадратное уравнение:
2х² - 7х - 4 = 0
D=b²-4ac = 49 + 32 = 81 √D=9
х₁=(-b-√D)/2a
х₁=(7-9)/4
х₁= -2/4
х₁= -0,5;
х₂=(-b+√D)/2a
х₂=(7+9)/4
х₂=16/4
х₂=4;
Уравнение квадратичной функции, график - парабола, ветви направлены вверх, пересекают ось Ох в точках х= -0,5 и х=4.
Функция <= 0, как в неравенстве, при х от х = -0,5 до х= 4 (график ниже оси Ох).
Решения неравенства: х∈[-0,5; 4].
Неравенство нестрогое, скобки квадратные.
В решении.
Объяснение:
Преобразуйте в многочлен стандартного вида:
(-a-1) (a³+5) = -а⁴ - 5а - а³ - 5 =
= -а⁴ - а³ - 5а - 5.