М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Nik10234
Nik10234
24.04.2021 13:42 •  Алгебра

( а^2+ а+1)( а^6+1)(а^24+1)×( а+1)( а^12+1)( а^2- а+1)( а-1)

👇
Открыть все ответы
Ответ:
annapupnova
annapupnova
24.04.2021

Надеюсь правильно)

Объяснение:

1.Степень с натуральным показателем -это число, полученное путем возведения основания степени в показатель степени, который является положительным целым числом.

2. Основание степени - число, которое нужно умножить на такое же число несколько раз называется основание. Например 3^4 степени - это 3*3*3*3=81 Здесь 3 - основание. 81- степень, 4-показатель степени, т. е. 4 раза умножили 3.

3. Показатель степени - это число, указывающее количество повторений, то есть показатель степени показывает сколько одинаковых множителей содержится в произведении.

4. Любая степень положительного числа есть число положительное.

5. При возведении нуля в любую натуральную степень n получается ноль

6.При возведение отрицательного числа в степень, необходимо определить четная степень или нечётная, если степень четная, то результат будет положительное число (+), если степень нечётная, то результат будет отрицательное число (-).

4,6(3 оценок)
Ответ:
ritaazarenko5
ritaazarenko5
24.04.2021

f(x) = 5x^2 - 3x  - квадратичная функция, графиком является парабола.

a = 5, a > 0, ветви параболы направлены вверх.

1) Для начала найдём область определения функции. Никаких дополнительных ограничений на аргумент не накладывается, поэтому: D(f):\ \ x \in \mathbb{R}.

2) Найдём координаты вершины параболы. Её абсцисса: x_{0} = -\dfrac{b}{2a} = -\dfrac{-3}{2\cdot 5} = \dfrac{3}{10} = \boxed{\textbf{0,3}} . Её ордината: y_{0} = f(x_{0}) = 5\cdot 0,3^2 - 3\cdot 0,3 = 5\cdot 0,09 - 0,9 = 0,45 - 0,9 = \boxed{\textbf{-0,45}} .

Таким образом, координаты вершины параболы: \boxed{\textbf{(0,3;\ -0,45)}} .

3) Найдём множество значений данной функции. Её график ограничен снизу, поэтому максимальное значение функции не определено, а минимальное соответствует ординате вершины параболы, значит:

E(f):\ \ y \in [-0,45; + \infty)}}.

4) Осью симметрии параболы является прямая, проходящая через вершину параболы и параллельная оси ординат. Таким образом, осью симметрии графика данной функции является прямая  \boxed{\textbf{x = 0,3}} .

5) Нулями функции называются те значения аргумента, при которых функция обращается в ноль. Получаем:

f(x) = 0\\5x^2 - 3x = 0\\x(5x-3) = 0\\\left[\begin{gathered}x = 0\\5x - 3 =0\\\end{gathered} \ \ \Leftrightarrow\left[\begin{gathered}x = 0\\5x = 3\\\end{gathered} \ \ \Leftrightarrow$\left[\begin{gathered}x=0\\x = 0,6\\\end{gathered}

Таким образом, функция имеет два нуля: \boxed{\textbf{0}} и \boxed{\textbf{0,6}} .

6) Промежутки знакопостоянства данной параболы напрямую зависят от нулей функции: на интервале от одного нуля до второго функция будет отрицательна, на всех остальных - положительна.

Функция положительна при  x \in (-\infty; 0)\ \cup\ (0,6; +\infty).

Функция отрицательна при  x \in (0;\ 0,6).

7) Промежутки монотонности - это промежутки возрастания и убывания. Для параболы они сменяют друг друга в вершине.

Функция убывает при  x \in (-\infty;\ 0,3] .

Функция возрастает при  x \in [0,3; +\infty) .

8) График пересекает ось Oy в тех точках, где x = 0. Абсцисса известна, осталось найти ординату: просто подставляем значение в функцию.

y = f(0) = 5 \cdot 0^2 - 3\cdot 0 = 0 - 0 = \boxed{\textbf{0}} .

Таким образом, график данной функции пересекает ось Oy в точке с координатами \boxed{\textbf{(0; 0)}} .

4,5(23 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ