М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
yellowmellow
yellowmellow
22.11.2020 23:45 •  Алгебра

Найдите значение выражения:


Найдите значение выражения:

👇
Ответ:
sahakohela
sahakohela
22.11.2020

2acnrci-0+4*(-π\6)+2*2π\3

2acnrci-2*π\3+4π\3

2acnrci-2π\3+4π\3

ответ: 2acnrci+2π\3

4,4(62 оценок)
Ответ:
crazyhack104
crazyhack104
22.11.2020

ответ: p/6

Объяснение:

=2*p/2- 3*p/2 -4*p/6+2*2p/3= -p/2 -2p/3+2*2p/3=-3p/6-4p/6+8p/6=p/6

4,6(38 оценок)
Открыть все ответы
Ответ:
kakoieshonik
kakoieshonik
22.11.2020

Научные методы обучения математике – это методы, направленные на организацию сознательной математической деятельности учащихся, посредством осуществления адекватных мыслительных операций. Научные методы подразделяются на: чувственные: восприятие, наблюдение, опыт теоретические: анализ, сравнение, обобщение, синтез и т.д. формально-логические: дедуктивные, индуктивные и т.д. Учебные методы обучения математике – методы, разработанные специально для обучения детей в средних общеобразовательных школах, направлены на эффективность обучения. Включают в себя такие методы как эвристические, методы программирования, обучение на моделях и т.п.

Объяснение:

4,8(13 оценок)
Ответ:
Egorjava
Egorjava
22.11.2020

Объяснение:

В основе метода математической индукции (ММИ) лежит принцип математической индукции: утверждение $P(n)$ (где $n$ - натуральное число) справедливо при $\forall n \in N$, если:

Утверждение $P(n)$ справедливо при $n=1$.

Для $\forall k \in N$ из справедливости $P(k)$ следует справедливость $P(k+1)$.

Доказательство с метода математической индукции проводится в два этапа:

База индукции (базис индукции). Проверяется истинность утверждения при $n=1$ (или любом другом подходящем значении $n$)

Индуктивный переход (шаг индукции). Считая, что справедливо утверждение $P(k)$ при $n=k$, проверяется истинность утверждения $P(k+1)$ при $n=k+1$.

Метод математической индукции применяется в разных типах задач:

Доказательство делимости и кратности

Доказательство равенств и тождеств

Задачи с последовательностями

Доказательство неравенств

Нахождение суммы и произведения

4,8(50 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ