1) 7140=10 *714=2*5*(2*357)=2^2*5*3*119 2) 924=2^2*3*7*11 396=2^2*3^2*11 НОД(924,396)=2^2*3*11=132 НОК(924,396)=2^2*3^2*5*7*11=13860 3)8/21=0,38095238 4) x=0,(18) 100x=18,(18) 100x-x=99x=18,(18)-0,(18)=18 x=18/99 b) 0,00(4)=x 100x=0,(4)=y 10y=4,(4) 10y-y=9y=4,(4)-0,(4)=4 y=4/9 4/9=y=100x x=4/900 5) |4x+3|=-6x-7 ---> 4x+3=-6x-7 или 4x+3=6x+7 10x=-10 2x=4 x=-1 x=2 При проверке х=-1 не даёт верное равенство, остаётся только х=2 6) |x-3|>= |2x+3| x-3=0 , x=3 2x+3=0 , x=-1,5 - - - - - - + + + Знаки модулей (-1,5)(3) - - - + + + + + + В верхней строчке знаки (х-3), а в нижней - (2х+3) а) пусть х<-1,5 , тогда неравенство перепишется так: -(х-3)>=-(2x+3) -x+3+2x+3>=0 , x+6>=0 , x>=-6 Так как получили иксы >=-6, а мы находимся в интервале х<-1,5 , то -6<=x<-1,5 б) пусть -1,5<=x<3 , тогда -(x-3)>=2x+3 , -3x>=0 , x<=0 Окончательно имеем: -1,5<=x<=0 в) х>=3 , тогда х-3>=2х+3 , x<=-6 - нет решения, т.к. должны иметь х>=3. ответ: х Є [-6; -1,5) U[-1,5 ;0]= [-6;0]
1) Боря берет конфеты по арифметической прогрессии: 1, 3, 5, ... a1(1) = 1; d1 = 2 Миша - тоже по арифметической прогрессии a2(1) = 2; d2 = 2 Всего Боря взял S1(n) = (2a1 + d(n-1))*n/2 = (2 + 2(n-1))*n/2 = (1 + n - 1)*n = n^2 = 60 7 < n < 8 Значит, n = 7, предпоследний раз Боря взял a1(7) = 1 + 2*6 = 13. И у Бори получилось S1(7) = 7^2 = 49 конфет. Но мы знаем, что всего он взял 60 конфет. Значит, в последний раз 11. Миша последний раз взял 14. Это тоже 7-ой раз. Всего Миша взял S2(7) = (2*2 + 2*6)*7/2 = 2*8*7/2 = 56 Всего конфет было 60 + 56 = 116
2) 231 = 3*7*11 На каждом этаже квартир больше 2, но меньше 7, то есть 3. Допустим, в доме 7 этажей. Тогда в одном подъезде 3*7 = 21 квартира. Квартира номер 42 - последняя во 2 подъезде. Квартир с номерами больше 42 во 2 подъезде нет. Значит, в доме 11 этажей. Тогда в одном подъезде 3*11 = 33 квартиры. Квартира номер 42 - последняя на 3 этаже.
1) 4t²+4t+1
2) 9m²-12mt+4t²
3) 4k²-20k+25
4) 16k²+24ky+9y²