площадь квадрата S₁, площадь прямоугольникаS₂, а- сторона квадрата, P- периметр квадрата.
Постольку в квадрате все стороны равны, то формула для нахождения площади такова: для нахождения периметру нужно найти сумму всех сторон, поскольку в квадрате все стороны равны, то:
Нельзя допустить деление на нуль, следовательно x≠0. Отсюда область определения:
График получается с растягивания графика (обратная пропорциональность) вдоль оси у в 6 раз. Это означает, что у данной функции, многие свойства такие же как и у обратной пропорциональности. Мы знаем что график обратной пропорциональности называется гиперболой. Следовательно, график тоже является гиперболой.
Область значений:
Так как функция принимает отрицательные значения на луче то и принимает отрицательные значения на луче
Нельзя допустить деление на нуль, следовательно x≠0. Отсюда область определения:
График получается с растягивания графика (обратная пропорциональность) вдоль оси у в 6 раз. Это означает, что у данной функции, многие свойства такие же как и у обратной пропорциональности. Мы знаем что график обратной пропорциональности называется гиперболой. Следовательно, график тоже является гиперболой.
Область значений:
Так как функция принимает отрицательные значения на луче то и принимает отрицательные значения на луче
Постольку в квадрате все стороны равны, то формула для нахождения площади такова:
для нахождения периметру нужно найти сумму всех сторон, поскольку в квадрате все стороны равны, то: