5y-5z+(y-z)^2=(z-y-5)*(z-y)
В решении.
Объяснение:
Решить уравнения:
1) (x-2)(x+2)+x(x-4)=6x-1
х²-4+х²-4х=6х-1
2х²-10х-3=0
Разделить уравнение на 2 для упрощения:
х²-5х-1,5=0, квадратное уравнение, ищем корни:
D=b²-4ac =25+6=31 √D= √31
х₁=(-b-√D)/2a
х₁=(5-√31)/2
х₂=(-b+√D)/2a
х₂=(5+√31)/2
2)(2x+1)²+(x-3)²=5(x+1)(x-1)
Раскрыть скобки:
4х²+4х+1+х²-6х+9=5х²-5
Привести подобные члены:
-2х= -5-10
-2х= -15
х= -15/-2
х=7,5
Проверка путём подстановки вычисленного значения х в уравнение показала, что данное решение удовлетворяет данному уравнению.
3)Решить систему уравнений:
4x-y=5
5x+2y= -7
Выразить у через х в первом уравнении, подставить выражение во второе уравнение и вычислить х:
-у=5-4х
у=4х-5
5х+2(4х-5)= -7
Раскрыть скобки:
5х+8х-10= -7
13х= -7+10
13х=3
х=3/13;
у=4х-5
у=(4*3)/13-5
у=12/13-5
у= -4 и 1/13
Решение системы уравнений (3/13; -4 и 1/13).
Проверка путём подстановки вычисленных значений х и у в уравнения показала, что данное решение удовлетворяет данной системе уравнений.
1. log^2 3(x)-15log27(x)+6=0
log^2 3(x)-5log3(x)+6=0
log3(x)=t
t^2-5t+6=0
t1+t2=5 t1=2
t1*t2=6 t2=3
log3(x)=2 log3(x)=3
x=3^2 x=3^3
x=9 x=27
2. 10(log^2)16(x)+3log4(x)-1=0
10/4 log^2 2(x)+3/2 log2 (x)-1=0
log2(x)=t
10/4 t^2+3/2 t-1=0
5 t^2+3 t-2=0
по формуле нахождения корней квадратного ур-я находим корни
t1=2/5 t2=-1
log2(x)=2/5 log2(x)=-1
x=2^2/5 x=2^ -1
x=5√4 x=1/2
только это не пять корней из четырех а корень пятой тепени из четырех, просто не знала как написать
5(y-z)+(y-z)^2=(y-z)(y-z+5)